原子時計の進み方が重力によって違うことについて-2
原子時計の進み方が重力によって違うことについて、いろんな方から、いろんなことを教えていただいたのですが、
以下のようなことを思い描いています。
これって、どうなのでしょうか?
(1)原子時計は、「重力による力学的?影響」を受けない(はず)。そのように作ったはず。
「原子の励起エネルギー」は「重力による力学的影響」を受けないはず。原子を励起させるための「振動子(発振器)」も「重力による力学的影響」を受けないはず。「振動子を制御するもの(回路?)」も、「振動子の振動を検出して、それを地上に伝える仕組み」も、原子時計の「全てのもの、全てのこと」は、「重力による力学的?影響」を受けないはず。
↓
(2)従って、原子時計を使えば、地球上のどこでも(また、宇宙のどこでも)、同じように時間を計る(合せる?)ことができるはず。
↓
(3)実際に、地上と上空の両方で原子時計を動作させてみた。
↓
(4)すると、「地上の原子時計の振動子の振動回数がN回になったときに、上空の原子時計の振動子の振動回数はすでにN回を超えている」???
↓
(5)なぜ???
「重力による力学的?影響」を受けないはずなのに、なぜ???
「重力による力学的?影響」を受けないはずなので、「地上の原子時計の振動子の振動回数がN回になったときに、上空の原子時計の振動子の振動回数もN回になる」はずなのに、なぜ???
↓
(6)なぜ?、なのだが、実際に、そのような現象が起きているのだから、その現象を受け入れなければならない。
↓
(7)とすると、「重力による力学的?影響」以外の「何らかのもの、何らかのこと」であって、「地上」と「上空」との違いによる「何らかのもの、何らかのこと」が、原子時計に関与しているとしか考えられない。
そう考えるしかない。
↓
(8)とすると、その「何らかのもの、何らかのこと」とは、何???
↓
(9)「地上の振動回数」と「上空の振動回数」を比較するということは、「地上の基準のもの(地上の時間?)」で「上空の回数」を数える(また、「上空の基準のもの(上空の時間?)」で「地上の回数」を数える)、ということになるのか?
↓
(10)とすると、その「何らかのもの、何らかのこと」とは、時間になるのか???
地上と上空とで時間が違うからなのか? 時間の進み方が違うからなのか?
地上と上空とで時間の進み方が違うとすれば、・・・「同じN回の現象」を異なる基準(時間?)に則って検出するのだから、確かに、「地上の原子時計の振動子の振動回数がN回になったときに、上空の原子時計の振動子の振動回数はすでにN回を超えている」ということになるわなあ。
そう考えるしかないのか、そう考えるべきなのか、・・・ということやなあ。
上空の原子時計の「全てのもの、全てのこと」(入れ物から、励起原子から、振動子から、電気回路の配線から、電気回路中の原子核や電子から、まさしく、全てのもの、全てのこと)が、地上の基準(時間?)で「観測すると」、ということか。
「嫌な観測問題」ということか。
↓
(11)そして、「エネルギーの定義の中に時間が含まれている」ので?(エネルギー:kg・m・m/(s・s)なので?)、時間とエネルギーの関係から、エネルギーの観点から解釈しても同じということか。
「エネルギーの基準?」みたいなものが、地上と上空とで違っている、ということか。
「地上のエネルギーの基準?」みたいなもので、上空の原子時計の「原子の励起エネルギー」を観測すると、地上の原子時計の「原子の励起エネルギー」よりも高い、ということか。(エネルギーについての「嫌な観測問題」ということか)
但し、「原子の励起エネルギー」だけでなく、原子時計の「全てのもの、全てのこと」のエネルギーが、「地上のエネルギーの基準?」みたいなもので「観測すると」、地上のものより高い、ということか。
↓
(11-1)仮に、上空の原子時計の「励起原子が基底状態に戻ることで放出する光子」が地上に届いたとすると、その光子のエネルギーは、地上の原子時計の「励起原子が基底状態に戻ることで放出する光子」のエネルギーよりも高い、ということか。
↓
(11-2)これが、光の「重力によるドップラー効果」というやつか???。
光の「重力によるドップラー効果」というやつは、(a)「時間の進み方が異なるので、光の振動数が変化するため」と解釈することもできるし、(b)「光と重力との作用で光の運動エネルギーが変化するので、光の振動数が変化するため」と解釈することもできるし、(c)「励起エネルギーが異なるので、放出される光子の振動数が変化するため」と解釈することもできる?、ということか?。
「励起原子が基底状態に戻ることで放出する光子」でなく、「電子の熱運動により放出される光子」の場合は、(c)の解釈に代えて、(c’)「電子の熱運動による運動エネルギーが異なるので、放出される光子の振動数が変化するため」と解釈することもできる?、ということか?。
↓
(12)また、振り子時計の場合は、周期T=k√(L/g)なので、地上g1、上空g2とすると、「重力による力学的?影響」を受けて、地上の振り子時計の周期はT1=k√(L/g1)、上空の振り子時計の周期はT2=k√(L/g2)になるはず?。
↓
(12-1)とすると、振り子時計の場合は、「重力による力学的?影響」を受けて、「地上の振り子時計の振動回数が1/T1回になったときに、上空の振り子時計の振動回数は1/T2回になる」はず?。
すなわち、「重力による力学的?影響」以外の「何らかのもの、何らかのこと」が、振り子時計に関与していなければ、「地上の振り子時計の振動回数が1/T1回になったときに、上空の振り子時計の振動回数は1/T2回になる」はず?。
そして、原子時計に関与するのと同じ「何らかのもの、何らかのこと」(時間の進み方?なのか、エネルギーの基準?みたいなものなのか)が、振り子時計にも同じように関与するならば、上空の振り子時計の周期はT2=k√(L/g2)よりも短くなって、「地上の振り子時計の振動回数が1/T1回になったときに、上空の振り子時計の振動回数は1/T2+α回になる」はず?。←これを確かめてみたい(無理っぽいが)。
↓
(12-2)ということは、天体の公転運動にも、この「α」に対応する・・・が・・・ということか。←これも計算してみたい(計算の仕方は、知らんし、たぶん、挫折するけど)。
↓
(13)また、エネルギー:kg・m・m/(s・s)の関係から、空間の観点から解釈しても同じということになるのか???。
「空間の基準?」みたいなものが、地上と上空とで違っている、ということか?。
「地上の空間の基準?」みたいなもので、上空の原子時計の「原子の原子核と電子との距離(又はそれに対応するもの)」を観測すると、地上の原子時計のものよりも長い、ということか。(空間についての「嫌な観測問題」ということか)。
但し、「原子の原子核と電子との距離」だけでなく、原子時計の「全てのもの、全てのこと」の長さがが、「地上の空間の基準?」みたいなもので「観測すると」、地上のものより長い、ということか。
↓
(13-1)原子核と電子との距離rに着目すると、r1→ka・r1、r2→ka・r2、r2-r1→ka(r2-r1)になって、エネルギー準位がE1→kb・E1、E2→kb・E2になって、励起エネルギーがE2-E1→kb・(E2-E1)になって、励起状態から基底状態に戻るときに放出される光子のエネルギーがhν→h・kb・νになる((a)時間の進み方が異なるためとも解釈できるし?、(b)光子が重力との作用で光子の運動エネルギーが変化するためとも解釈できる?)、ということなのか???
↓
(13-2)振り子時計の場合は、「L」が長くなって、周期がT2=k√(L/g2)よりも短くなって、振動回数が「1/T2+α回」になる、ということなのか???
↓
(13-3)砂時計の場合は、砂の粒が大きくなって、砂の落下口が大きくなって、砂の落下口から砂時計の底までの距離が長くなって、・・・というようなことになるのか???
↓
(14)ということは、kg・m・m/(s・s)の関係から、質量の観点から解釈してもよく、質量の観点から解釈しても同じということになるのか???。
↓
(15)というようなことを、思い描いて・・・? 「光速度C=一定」というのが出てきてへん。
↓
(16)どこ? 「光速度C=一定」は、どこ??? 「光速度C=一定」は、なくてもよいのか???
↓
というようなことを、思い描いています。
これって、どうなのでしょうか?
(A)まあまあ。
(B)いまいち。
(C)おしい。
(D)ちょっと違う。
(E)全然違う。
(F)その他。
よろしくおねがいします(ありがとうございました)。
お礼
少し調べてみました。回答ありがとうございました。