ベストアンサー ※ ChatGPTを利用し、要約された質問です(原文:数列教えてください(誘導に従うと解けません・・・)) 数列の一般項を求める方法とは? 2011/11/09 17:32 このQ&Aのポイント 数列の一般項を求める方法について詳しく解説します質問の数列の一般項を求めるための手順を説明します分数型の漸化式を用いて、数列の一般項を解く方法について紹介します 数列教えてください(誘導に従うと解けません・・・) A(1)=4、A(n+1)=4-3/An、 Bn=A(1)・A(2)・A(3)・・・A(n)、 Cn=B(n+1)-Bn (1)Cnの一般項を求めよ (2)Bnの一般項を求めよ (3)Anの一般項を求めよ という問題なのですが、解説には、 (1)は、Cn=A(1)・A(2)・A(3)・・・A(n){A(n+1)-1}=A(1)・A(2)・A(3)・・・A(n)(3-3/An) =A(1)・A(2)・A(3)・・・A(n)[3・{(An-1)/An}] とだけ書いてあり、答えは、Cn=3^(n+1)となるようです。 自分でもいろいろ考えたのですが、分数型の漸化式として解くと、(3)のAnは答えが出ました。 ですが、(1)と(2)は(3)の誘導だと思うのに、(1)→(2)→(3)と解けません。(この仮定が間違っているのでしょうか。) 【質問】この問題は(1)→(2)→(3)と解けるのでしょうか。その解き方を教えてください。よろしくお願いします。 ----------------------------- *(自分の考え)Anの出し方 A(n+1)=[4An-3]/An、 AnA(n+1)をxとおくと、x^2-4x+3=0より、x=1,3 よって、[A(n+1)-1]/[A(n+1)-3]=[A(n)-1]/[A(n)-3]×3 ここで、Dn=[A(n)-1]/[A(n)-3]とおくと、 D(n+1)=3Dnより、Dn=3^(n-1)・D(1) D(1)=3より、[A(n)-1]/[A(n)-3]=3^n 以上より、An=[{3^(n+1)}-1]/[(3^n)-1]・・・(答え) *ちなみに、(2)(3)の答えは、それぞれ、Bn=1/2(3^(n+1)-1)、An=[{3^(n+1)}-1]/[(3^n)-1]です。 質問の原文を閉じる 質問の原文を表示する みんなの回答 (2) 専門家の回答 質問者が選んだベストアンサー ベストアンサー nag0720 ベストアンサー率58% (1093/1860) 2011/11/09 18:03 回答No.1 C(n)=A(1)・A(2)・A(3)・・・A(n){A(n+1)-1} =A(1)・A(2)・A(3)・・・A(n)[3・{(A(n)-1)/A(n)}] =3A(1)・A(2)・A(3)・・・A(n-1){A(n)-1} =3C(n-1) より、C(n)は等比数列になります。 B(n)=C(n-1)+C(n-2)+C(n-3)+・・・+C(1)+B(1) A(n)=B(n)/B(n-1) 質問者 お礼 2011/11/10 01:35 ご回答どうもありがとうございます。 A(1)・A(2)・A(3)・・・A(n-1){A(n)-1}=C(n-1)というのが分かっていなかったようです。 もやっとした気持ちが晴れました。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 その他の回答 (1) spring135 ベストアンサー率44% (1487/3332) 2011/11/09 23:16 回答No.2 >AnA(n+1)をxとおくと、x^2-4x+3=0より、x=1,3 何を言っているのか不明です。 極限値xがあるとすると x=[4x-3]/x これを解いて x=3,1 この時 A(n+1)-1=3-3/An=3(An-1)/An (1) A(n+1)-3=(An-3)/An (2) (1)/(2)を作ると 以下 >よって、[A(n+1)-1]/[A(n+1)-3]=[A(n)-1]/[A(n)-3]×3 につながります。 A(n)が求まれば猪口才なB(n),C(n)なんて気にすることはありません。 適当に付き合ってやればよろしい。 質問者のA(n)、あってます。 質問者 お礼 2011/11/10 01:49 ご回答ありがとうございます。 >AnA(n+1)をxとおくと、x^2-4x+3=0より、x=1,3 >何を言っているのか不明です。 仰るとおりですね。「An、A(n+1)をxとおくと」と書きたかったのですがミスしていたようです、すみません。 ただ、「a(n+1)=an=x と置いて、xの値を求めるのが解き方のパターンであり、なぜそう置くかは分かっていない」と私が教えてもらった数学教師が仰っていたのですが、極限値ということなんですね。 少し謎が解けた気がします。 >A(n)が求まれば猪口才なB(n),C(n)なんて気にすることはありません。 確かに、他の問題にB(n),C(n)は出てこないでしょうから、A(n)さえ求まれば問題ないですね。。 ありがとうございました。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 数列の問題 次の数列の問題の解答をお願い致します。 2つの数列{an},{bn}は、a1=5,b1=2で、 漸化式(n=1,2,3,…) an+1=4an-3bn bn+1=2an-bn をみたす。 a1=アイ,b1=ウ である。 数列{cn}をcn=an-bn(n=1,2,3,…)を定めると、 数列{cn}は cn+1=エcn をみたす。 よって、数列{cn}の一般項は cn=オ・カ^n-1 である。 また、pを定数とし、数列{bn}をdn=an-pbn(n=1,2,3,…)と定める。 すべての自然数nについて、dn+1=dnが成り立つのは p=キ/ク のときであり、このとき数列{dn}の一般項は dn=ケ である。 以上より、数列{an},{bn}の一般項は、それぞれ an=コ・サ^n-1-シ bn=ス・セ^n-ソ である。 さらに、数列{anbn}の初項から第n項までの和∑akbkは タ・チ^2n+1-ツテ・ト^n+2+ナニn+ヌネ となる。 アイ=14、ウ=8、エ=2までは解けたのですが、 以降、行き詰っています。 数列です 漸化式 a1=1, an+1=2an+2^n (n=1,2,3,……)で 定められる数列{an}がある。 (1) bn=an/2^n とおく。 数列{bn}の満たす漸化式を求めよ。 (2) 数列{an}の一般項を求めよ。 ↓の写真は(1)を解いてる途中です。 この先で困っています。 できる方は教えてくださると嬉しいです。 漸化式とA^n 漸化式とA^n 行列A=(1 -1)について,A^n=(an bn)(n>=1)とする。 ^^^^^^(0 2)^^^^^^^^^^^^^(cn dn) (1)an,bn,cn,dnを求めよ。 (1)A^n+1=A^nAから(an+1 bn+1)=(an -an+2bn) ^^^^^^^^^^^^^^^^^^^^(cn+1 dn+1)^(cn -cn+2dn) となって解答は処理していたんですが、自分はA^n+1=AA^nとして処理しようとしました。 しかし、答えが一致しません。誰か、途中式書いて教えてください。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 数列 (1) a(1)=1, a(n+1)=3(an)+5^nのとき、一般項anを求める a(1),a(n+1)=3(an)+5^n ……(1) (1)の両辺を5^(n+1)で割って (an+1)/(5^(n+1)=(3an/(5・5^n))+5n/(5・5^n) bn=an/5とおくと b(n+1)=(3/5)・bn+1/5より変形して b(n+1)-1/2=3/5(bn-1/2) ここで初項と公比をもとめるのですが、どのようにして求めるのですか? そして、このあとどのように求めるのですか? (2) 次の式によって定義されている数列{an}の一般項anを求めるについて a(1)=7, a(n+1)=(1/2)・an+3 初項と公比はどのようにしてもとめるのですか? そして anの形にどのようにしてなるのですか? お願いします 数列について 数列{an}は初項a,項差dの等差数列であり、数列{bn}は初項a,公比rの等比数列である。 ここで、数列{cn}をcn=an+bnを満たすように定めると、 c1=1 c2=3 c3=7であった。 a=1/2であり {an},{bn}の一般項は an=3n-5/2 bn=1/2(-1)^n-1である。 以下、このときである。 [画像参照] 上の問題続きは、画像を添付をしていますので、そちらをご覧になって頂きたいのですが、シス以降答えがでなくて困ってます。 解き方を教えていただけると嬉しいです。 ちなみに、シス,セソ,タ,チツ,テト,ナニ,ヌネ,ノハヒフ=32,14,6,16,13,-1,-3,-300となっております。 数学B、数列についての質問です 数列の一般項を求めるパターン、例えば特性方程式やズラして引くなど いろいろありますが、このような問題もパターンでしょうか? 【問題】 数列{An}は A1=6 A(n+1)=2An-3n+1 (n=1,2,3…) (1)Bn=An-3n-2(n=1,2,3…)で定められる数列{Bn}が等比数列であることを示せ (2){An}の一般項をもとめよ An=2^(n-1)+3n+2 となりますが A(n+1)=2An-3n+1 のように 漸化式に『数列』と『n』が混在している時 この問題では Bn=An-3n-2 として考える誘導がついていましたが どうしてこのような数列を考えたのでしょうか? これはたまたま上手くいくからなのでしょうか? それとも何か理由があるのでしょうか? 数列について 数列{an}は初項a,項差dの等差数列であり、数列{bn}は初項a,公比rの等比数列である。 ここで、数列{cn}をcn=an+bnを満たすように定めると、 c1=1 c2=3 c3=7であった。 a=1/2であり {an},{bn}の一般項は an=3n-5/2 bn=1/2(-1)^n-1である。(問題文より) 以下、このときである。 [画像参照] 上の問題続きは、画像を添付をしていますので、そちらをご覧になって頂きたいのですが、シス以降答えがでなくて困ってます。 解き方を教えていただけると嬉しいです。 ちなみに、シス,セソ,タ,チツ,テト,ナニ,ヌネ,ノハヒフ=32,14,6,16,13,-1,-3,-300となっております。 数列を教えて下さい 数列{an}は初項1の等差数列であり、a4+a5=16を満たしている。数列{an}の初項から第n項までの和をSnとし、数列{bn}、{cn}をそれぞれbn=1/2(Sn+S(n+2))(n=1,2,3,……)、cn=√(Sn×S(n+2))(n=1,2,3,………)によって定める。 (1)anをnを用いて表せ。→解けました。 an=2n-1です。 (2)Snをnを用いて表せ。また、bn、cnをそれぞれnを用いて表せ。 (3)b1、c1、b2、c2、b3、c3、………、bk、ckと並べた数列がある。この数列の初項から第2m項までの和をmを用いて表せ。ただし、m=1,2,3,………とする。 解答と解説をよろしくお願いします。 数列 (問)1,2,6,15,31,・・・・の一般項を求めよ という問題なんですが、これは一体どうやって求めればいいんでしょう? 数列{An}の階差数列{Bn}とすると、 An=A1+ΣBkっていう公式を使うんでしょうか? 答えはAn=1/6(2n^3-3n^2+n+6)と分かっているのですが・・・。 数列の問題 数列{an} を、a(1)=1 , a(n+1)=3an + 2・3^(n+1) (n=1,2,3.........) で定義する。 bn=an/3^n とおくと、数列{bn}は b(1)=[ア] , b(n+1) = [イ]bn + [ウ] (n = 1,2,3......) を満たすので、一般項は[エ]とあらわされる。したがって、数列{an} の一般項は[オ]と表される。 よってlim[n→∞] a(n+1)/an = [カ] 答え ア 1/3 イ 1 ウ 2 エ bn = 2n - 5/3 オ 不明 カ 3 オ と カ の途中式を教えてください。式がわかり辛くてごめんなさい。 数列を教えて下さい 数列{an}は初項1の等差数列であり、a4+a5=16を満たしている。数列{an}の初項から第n項までの和をSnとし、数列{bn}、{cn}をそれぞれbn=1/2(Sn+S(n+2))(n=1,2,3,……)、cn=√(Sn・S(n+2))(n=1,2,3,………)によって定める。 (1)anをnを用いて表せ。 (2)Snをnを用いて表せ。また、bn、cnをそれぞれnを用いて表せ。 (3)b1、c1、b2、c2、b3、c3、………、bk、ckと並べた数列がある。この数列の初項から第2m項までの和をmを用いて表せ。ただし、m=1,2,3,………とする。 数列 数列{an}がa1=1,a2=3,an+2=3an+1-2an(n=1,2,3,……)で与えられている。 (1)bn=an+1-anとおき、bnをnの式で表せ。 (2)anをnの式で表せ。 解答 (1)bn=2^n (2)an=2^n-1 与えられている数列の2項間の関係に目を向ければいいのは 分かるのですが、どこから手をつけたらいいか分かりません。 途中式含めて解説よろしくお願いします! 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 数学Bの数列の問題です 数列の質問です。 a2=9の等差数列{an}があり、初項から第10項までの和は230である。また、数列{bn}をb1=-1,bn+1=2bn+an(n=1,2,3…)で定義する。 (1)数列{an}の初項はア、交差はイであり、一般項はan=ウn+エである。 (2)cn=bn+αn+β(n=1,2,3…)とおく。すべての自然数nに対してcn+1=2cnとなるとき、α=オ,β=カである。このときc1=キ,cn=ク^ケである。 (3)bn=コ^サ-シn-ス Σ[n,k=1]bk=セ^ソ-タn^2-チn-ツである。 答えは ア5,イ4,ウ4,エ1,オ4,カ5,キ8,ク2,ケn+2,コ2,サn+2, シ4,ス5,セ2,ソn+3,タ2,チ7,ツ8です。 数列の問題です。よろしくお願いします! 数列{bn}は a1=1 an+1=2an+2(n=1、2、3、・・・) ∑kbn=an(n=1、2、3・・・) (∑は上がn、下がk=1です) を満たしている。 {bn}の一般項を求めよ。 数列の問題です。 数列の問題なのですが、わかりません。簡単でいいですので教えてください。それでも分からなければ、補足質問します。a1やanがちゃんと書けませんが、aが大きくて、1やnは小さいのです。よろしくお願いします。 問1. 初項がa1=1で、漸化式an+1=2(n+1)an(n=1,2,3・・・・)で定義される数列の一般項anを求めよ。 問2. a1=4, an+1=-2an-6(n=1,2,3・・・・)のように定義される数列{an}の一般項をもとめよ。 数列です 1,1+2,1+2+3,……,1+2+3+……+n,…… という数列があり、 (1)第k項をkの式で表せ。 (2)初項から第項までの和Snを求めよ。です (1)は普通に考えて連続する自然数の和 n/2(n+1)で解決したのですが…問題は(2)でして自分の回答を書くので間違えているところがあれば指摘をお願いします。 ※Σの正しい書き方がわからないのでここではΣの上の式をn-1で下の式をk=1として省略します。すいません まず1,1+2,1+2+3,……,1+2+3+……+n,……をAnとして Anの初項から第6項までを1,3,6,10,15,21と求めます。 次にSnの初項から第5項までを1,4,10,20,35と求め、 Snの階差数列Bnの初項から第4項までを3,6,10,15を求め、 さらにSnの第2階差数列Cnの初項から第3項までを3,4,5と求めることができます。 ここでCnの一般項{Cn}=k+2 Bn=B1+Σ(k+2)=n^2/2+3n/2+1 よってBnの一般項{Bn}=n^2/2+3n/2+1 したがって同様に{Sn}を求めます。 Sn=S1+Σ(k^2/2+3n/2+1)=n/6(n+1)(n+2)となります。 最終的な答えは合っているのですが途中経過が一切書かれてなく合っているか不安です。 あと、もっとスマートに解ける方法がありましたら是非教えていただきたいです。 お願いします。 数列がわかりません!助けてください! 数列の問題で質問です! 問1 a1=0 an+1=2an+nで定義される数列anの一般項を求めよ 問2 a1=1 an+1=3an+3のn乗(n=1.2.3・・・)によって定義された数列anがある。一般項anをnであらわせ 問3 a1=1 an+1=2an/an+5(n≧1)で定められる数列an の一般項を求めよ です。3以外の答えはわかっていて、 問1 an=2のn乗-n-1 問2 an=n・3のn-1乗です。 とき方がわかりません。。。 わかりにくい表記ですいません。 数列の極限の証明 「a1=a,b1=b,(a>b>0) a(n+1)=(an+bn)/2 b(n+1)=anbn^1/2 で定まる二つの数列{an},{bn}は同じ極限値を持つことを示せ。」 という問題を解いていて、このリンクの証明を見たのですが、 http://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q1463528674 証明の最後で、a_n+1=ka_n を満たす1より小さい正の実数kが存在することから、 a_n=k^(n-1)*a1 として、n→∞でa_n→0としていましたが、 a_n=f(n)として、f(x)が単調減少関数でf(n+1)=k_n(fn) (k_nはnによって変化する1より小さいある正の定数)となっても、 k_nはnに依存するので、必ずしもx(またはn)→∞でf(x)(またはf(n))→0になるとは限らないのではないのでしょうか。(ex. k_n→1 (n→∞), f(x)=(1/x)+(1/2)) その可能性はないのでしょうか? 以下がリンク先の証明の全文です。 与えられた漸化式と0<a<bより帰納的に0<an,0<bnとなる。 すると相加・相乗平均の関係より a(n+1)/b(n+1)=(an+bn)/2√(anbn) =(1/2){√(an/bn)+√(bn/an)}≧(1/2)*2*√(an/bn)*√(bn/an) =1 ∴b(n+1)≦a(n+1)となる。 ここで等号が成り立つとすると bn=anより a(n+1)=(1/2)(an+bn)=(1/2)*2an=an となり an=a(n-1)=…=a1=a=b1=b となりa<bに矛盾する。 よって等号は成立しないので b(n+1)<a(n+1) となり、したがって bn<an…(*) となる。 すると an+bn<2anより a(n+1)=(1/2)(an+bn)<(1/2)*2an=an となる。 したがって0<anより a(n+1)=k*an を満たす1より小さい正の実数kが存在する。 すると an=k*a(n-1)=k^2*a(n-2)=…=k^(n-1)*a1=k^(n-1)*a となるから lim[n→∞]an=a*lim[n→∞]k^(n-1)=0…(**) となる。 すると(*)と0<bnより 0<bn<an だから(**)からはさみうちの原理により lim[n→∞]bn=0 となる。 よって lim[n→∞]an=lim[n→∞]bn=0 となる。 高校の数学です。 ※数列{an}のaとnが同じ大きさですが、実際はaの方が大きいです。 {bn}も同様。 nの横の+1はaのn+1ということです。 (コ)n だけは(コ)がnの係数です。 数列{an}が、漸化式a1 =8、an+1 =5an +8 (n=1、2、3…)で定義されるとき、an+1 +(ア)=(イ)(an +(ア))と変形できるので、数列{an +(ア)}は初項が(ウエ)、公比が(オ)の等比数列である。よって、数列{an}の一般項はan =(カ)・(キ)^n-(ク)である。 このとき、数列{bn}が、漸化式b1 =1/2、bn+1 -bn =anで定義されるとすると、数列{bn}の一般項はbn =(ケ)^n-(コ)n/(サ)である。 分からないので答えを教えて下さい。 ヒントではなく答えをお願い致します。 2つの数列の関係式 数列{an}と{bn}は関係式 an+1=(4an+bn)/6 bn+1=(-an+2bn)/6 (n=1,2,・・・) を満たしている。an=1 bn=-2 。 このときに ● {an}が 4an+2 - 4an+1 + an =0 を示す方法 ★ 数列{2^nan} が等差数列であることを示す方法。 ▲ {an}と{bn}の一般項を求める方法。 を教えていただきたいです。 ●は三項間漸化式で解こうとしたのですが、これを示さないといけないから、この式は使えないのでどうしたらいいかわかりませんでした・・・ それとanとか解りづらくてすいません・・・ どなたかよろしくおねがいします。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
ご回答どうもありがとうございます。 A(1)・A(2)・A(3)・・・A(n-1){A(n)-1}=C(n-1)というのが分かっていなかったようです。 もやっとした気持ちが晴れました。