締切済み 微分方程式、特性多項式、特性根、基本階、特殊解 2011/07/17 22:26 次の問題のやり方がわからなくて困っています。 (d^2y/dx^2)-(3dy/dx)-4y=5cos2x わかる方ぜひ解答お願いします。 みんなの回答 (1) 専門家の回答 みんなの回答 muturajcp ベストアンサー率77% (511/658) 2011/07/19 04:29 回答No.1 y"-3y'-4y=5cos2x D=d/dx とすると (D^2-3D-4)y=5cos2x (D-4)(D+1)y=5cos2x y=e^{-x}∫e^{5x}∫e^{-4x}5cos2xdxdx y=(-4cos2x-3sin2x)/10+c1e^{4x}+c2e^{-x} 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 微分方程式、特性多項式、特性根、基本階、特殊解 次の問題のやり方がわからなくて困っています。 次の微分方程式を特性多項式、特性根、基本階、特殊解を求めて解け。 (d^2y/dx^2)-(5dy/dx)+6y=2e^4x y(0)=1,y'(0)=2 わかる方ぜひ解答お願いします。 微分方程式、特性多項式、特性根、基本階、特殊解 次の問題のやり方がわからなくて困っています。 次の微分方程式を特性多項式、特性根、基本階、特殊解を求めて解け。 (d^2y/dx^2)-(5dy/dx)+6y=3e^3x わかる方ぜひ解答お願いします。 常微分方程式の一般解についての質問です。 常微分方程式の一般解についての質問です。 d^2y/dx^2+(dy/dx)^2+4*x*dy/dx+(2x)^2+2=0 の一般解を求める問題なんですが、y=exp(λx)とおくと、 (dy/dx)^2の項だけexp(λx)が残ってしまい特性方程式が立てられません。 こういった問題は、何か他のやり方があるのでしょうか?? この問題は解答がなく、参考書などで調べたのですが、この類の問題が載ってなかったので、 やり方を教えていただけるとありがたいです。 よろしくお願いします。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 2階微分方程式について yy"+(y')^2+1=0 解:(x+A)^2+y^2=B^2 の解き方がわかりません。 dy/dx=pとして d^2y/dx^2=dp/dx=dy/dx・dp/dy=p(dp/dy) . yp(dp/dy)+p^2+1=0......(1)問題式にd^2y/dx^2、dy/dx=pを代入する。 p(dp/dy)+p^2/y+y.......(2)両辺に1/yをかける。 . ベルヌーイ形なので,u=p^2 (du/dy=2p・dp/dy)を代入して、 1/2du/dy+u/y=-y.....(3) . uとyの、線形微分方程式として解いて、 u=p^2=1/y^2(-1/2・y^4+C)......(4) . p=±1/y√(-1/2・y^4+C)........(5) この後(5)を積分して解が出ると思うのですが、 (それ以前に考え方自体が間違っているかもしれませんが) 右辺の積分の仕方がわからず解けなくて困っています。 どなたか教えてください 微分方程式 (d^2y/dx^2)+2(dy/dx)+y=e^(-x) 条件:x=0のとき、y=0, dy/dx=0 上の微分方程式がどうしても分かりません。 すごく簡単な問題だと思いますが、悩んでいます。 分かる方、教えていただきたいですm(_ _)m 線形微分方程式の解があいません 課題で出題された問題で dy/dx=2(y-1)*tanh2x y(0)=4 という条件のものがありそれの特殊解の解答が y=1+3cosh2x となっているのですが、自分で計算をするとどうしても y=1+3/cosh2x になってしまいます。これはどちらの解答が正しいのでしょうか。 回答よろしくお願いします。 微分方程式の問題です。 微分方程式の問題です。 微分方程式の問題で、 (d^2y)/(dx^2)+(tanx)*{(dy)/(dx)}+(cos^2x)*y=0 の一般解を求めよという問題なのですが、解き方が分からず困っています>< 解法が分かる方がいれば、解法を教えていただけないでしょうか? よろしくお願いします!! 微分方程式に関する問題です。 (dy/dx)^2 + 2(ytan(x))dy/dx = f(y) (*) f(y) = 0 とする。y = (cos x)^2 は、方程式(x)の一つの解である事を証明せよ。 ********************************************* という問題です。 y' = -2sin(x)cos(x) y'' = -2{(cos x)^2 - (sin x)^2} として(*)に代入したのですが、うまく0になりません。 どういうふうに計算すればよいのでしょうか? よろしくお願いします。 微分方程式の問題がわからなくて困っています。 次の問題のやり方がわからなくて困っています。 次の微分方程式を解け。 dy/dx=(2y/x)+x^3sinx わかる方ぜひ解答お願いします。 微分方程式の解き方について d^2y/dx^2 + 4dy/dx + 3y = 3x^2 + 2x 初期値:x=0のときy=1,dy/dx=1 の解き方がよくわかりません。解き方が分かる方、どうか助けて下さい! 微分方程式の問題 問題 x^2 * d^2y/dx^2 - 3x * dy/dx + 3y = 0 この微分方程式に y = f(x) * x^3 を代入して、基本解を求めよ。 代入すると x * d^2f(x)/dx^2 +3df(x)/dx = 0 になりました。 どなたかここからの解答(解き方)をご教授ください 完全微分方程式 P(x,y)dx+Q(x,y)dy =(cos(x)y^2 + 2xcos(y) + y^2)dx + (2ysin(x) + -sin(y)x^2 + 2xy)dy =0 という完全微分方程式の解き方を出来れば分かりやすく教えてください お願いします 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 微分方程式について 次のような微分方程式があります d^2 x/dx^2 - (dy/dx)(4+x)/x +y*(6+2x)/x^2 =0 問題は以下です y=ux^2(uはxの関数)がこの微分方程式の解となるために uの満たすべき微分方程式を求めなさい。 要は u''=u'=u になればいいということじゃないのでしょうか ですがこれだと微分方程式になりません もしくはこれが解答でいいのでしょうか? ヒントのみでもいいので教えてください。 2階斉次線形微分方程式の基本解と一般解のズレ 次の微分方程式の一般解を求めよ。 (d^2 y)/(dx^2) + (1/x) (dy/dx) - 1/(x^2) y = 0 練習問題3.2(3)の解答より y1 = x が基本解の一つ。 exp (-∫P(x')dx') = exp(-∫1/x' dx') = exp(-log x) = 1/x であるから、もう一つの基本解は y2 = x∫1/x^3 dx = x(-1/(2x^2) = -1/2x したがって、一般解は y = c1 * x + c2 * 1/x ・・・という問題なのですが、基本解(-1/2x)と一般解(1/x)にズレがあるように思えます。 私の計算も上のようになりましたが、それならば一般解は y = c1 * x + c2 * -1/2x になるべきではないですか? その前の例題などでは、導き出したy2の値をそのまま一般解に使用しています。 というか、-1/2xを使用しないのなら、なぜわざわざ計算しているのですか??? ちなみに、練習問題3.2(3)では、 P(x) = 1/x, Q(x) = -1/(x^2) を m(m-1) + mx * P(x) + x^2 * Q(x) = 0 にあてはめて m(m-1) + m - 1 = 0 m^2 - 1 = 0 (m-1)(m+1) = 0 したがって、 y = x と y = x^-1 = 1/x が基本解のうちの2つである、となっています。 この時点で、もう一つの基本解は1/xであると分かっているんですよね・・・。 ですから、本の解答の y = c1 * x + c2 * 1/x は合っているのだと推測します。 ただ、それなら-1/2xという数字が何なのか分かりません。 疑問だらけです。教えてください。お願いします。 微分方程式 (d^2y/dx^2)+2dy/dx+ay=0 (aはa>1なる定数)について以下の問に答えなさい。 (1)初期条件y(0)=1、y'(0)=-1を満たす解を求めんさい。 (2)前門で求めた解がy(π)=0を満たすような定数aの値を求めなさい。 (1)の解を求めたところ、 y=(e^-x)*cos(√(4a-4)/2)xとなりました。 そこで(2)なのですが 0=cos(√(4a-4)/2)πとし (√(4a-4)/2)=1/2としたところa=5/4となりました。 cos○π=0となるのは1/2πと3/2πがあると思うのですが ほかに考えられるものはあるのでしょうか?? 微分方程式の特殊解 申し訳ありませんが、教えてください。 (d^2y/dx^2)-(dy/dx)=e^x/(1+e^x) という2階の微分方程式で同次方程式の一般解は、 y=A+Be^x (A,Bは定数) となりますが、特殊解の求め方が分かりません。 お分かりになる方、教えてください。 よろしくお願いします。 偏微分方程式の解き方 x(y-z) (∂z/∂x) + y(z-x) (∂z/∂y) = z(x-y) この微分方程式を解く問題で、解答を見ても、理解できない部分があるため、質問させていただきます。 ~解答~ 補助方程式 dx/x(y-z) = dy/y(z-x) = dz/z(x-y) これより、 (1/x)dx / (y-z) = (1/y)dy / (z-x) = (1/z)dz / (x-y) と変形できます。 ここまでは分かるのですが、 これに加比の理を適用すると、 d(logx+logy+logz) / 0 = ((1/x)dx+(1/y)dy+(1/z)dz) / ((y-z)+(z-x)+(x-y)) = (1/x)dx / (y-z) = (1/y)dy / (z-x) = (1/z)dz / (x-y) ↑ここの1つ目のイコールが何故、成り立つのかが理解できません。 d(logx+logy+logz)を計算したら、1/x + 1/y +1/z になってしまわないでしょうか? 逆に、積分してlogになったのだとしても、dが残る理由が理解できません。 よろしくお願いします。 一応、続きも書いておきます。 ここで、d(logx+logy+logz) / 0 より、 d(logx+logy+logz) / 0 = d(logxyz) = 0 よって、logxyz = C' ゆえに、xyz = C (積分定数) このあと、もう1つの解を出して、一般解とします。 微分方程式について dx/dy=y^2-yを解けという問題についてです 自分は与式より y = 0,1 y≠0,1とし ∫1/(y^2-y)dy=∫dx log|(y-1)/y|= x + C |(y-1)/y|= e^(x + C) (y-1)/y = ±e^C・e^x ±e^Cは定数であるからe^C=Dとすると (y-1)/y = D・e^x y = 1/(1-D・ex) よって答えをy = 0,1,y = 1/(1-D・e^x)と求めたのですが 解答はy = 0,y = 1/(1-D・e^x)となってました どうして答えにy = 1が含まれないのでしょうか。 いまいちこの範囲が理解できていないので、ほかにも間違っているところなどあったら訂正などしていただけるとうれしいです 変数係数の二階微分方程式について x^2(d^2y/dx^2)-x(dy/dx)+y=x^2の解き方を教えてください。 同次形高階微分方程式について 同次形高階微分方程式について 同次形高階微分方程式の単元を読んでいますと、「y,dy,d2y について同次の場合」とか「x,dx について同次の場合」とあるのですが、式を見てy,dy,d2y について同次なのか、x,dx について同次なのか判断できません。具体的には、 xy(d2y/dx2)-x(dy/dx)^2+y(dy/dx)=0 はy,dy,d2y について2次の同次形で、x^2(d2y/dx2)+x(dy/dx)+y=0 はx,dx について0次の同次形 であるとありますが、どのように判断すればよろしいのでしょうか? 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など