ベストアンサー 数列について 2011/06/07 22:03 数列についての質問です。 a_(n+1) = α*a_(n) という漸化式がどうやって a_(n) = a_(1)*α^n-1 と、なるのか分かりません。 説明お願い致します。 みんなの回答 (3) 専門家の回答 質問者が選んだベストアンサー ベストアンサー KEIS050162 ベストアンサー率47% (890/1879) 2011/06/07 22:23 回答No.1 等比数列の初歩となります。そのまま覚えてしまうのが良いですが、理屈がわからないと覚えられませんので、 下記を参考にしてください。(教科書・参考書にも載っていると思います。) http://www.ravco.jp/cat/view.php?cat_id=6540 具体的な例でも考えてみましょう。 a_(n+1) = α a_(n) なので、公差はαです。 例えば α=2としてみます。 a_(1) は初項となります。仮にこれを a_(1) = 3と置いてみます。 a_(1) = 3 a_(2) = 6 … 3 × 2 a_(3) = 12 … 3 × 2 × 2 a_(4) = 24 … 3 × 2 × 2 × 2 … と続きます。 即ち、初項 × 2の(n-1)乗 となっているのが分かりますね。 ご参考に。 質問者 お礼 2011/06/07 22:32 丁寧な回答ありがとうございました。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 その他の回答 (2) okormazd ベストアンサー率50% (1224/2412) 2011/06/07 22:32 回答No.3 左辺 右辺 n a_(n+1) α*a_n ------------------------ 1 a_2 = α*a_1 2 a_3 = α*a_2 3 a_4 = α*a_3 ・ ・ ・ ・ ・ n-1 a_(n-1) = α*a_(n-2) n a_n = α*a_(n-1) ------------------------ 左辺を全部かけたもの=右辺を全部かけたもの ですね。 したがって、 a_2*a_3*a_4*・・・*a_(n-1)*a_n=α*a_1*α*a_2*α*a_3・・・*α*a_(n-2)*α*a_(n-1) =α^(n-1)*a_1*a_2*a_3・・・*a_(n-2)*a_(n-1) です。 両辺を、a_2*a_3*a_4*・・・*a_(n-2)*a_(n-1) で割れば、 a_(n) = a_(1)*α^n-1 になるでしょう。 質問者 お礼 2011/06/18 09:05 お礼遅れました。 回答ありがとうございました。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 spring135 ベストアンサー率44% (1487/3332) 2011/06/07 22:25 回答No.2 a_(n+1) = α*a_(n) 一個づつずらして a_(n) = α*a_(n-1) a_(n-1) = α*a_(n-2) ....... a_(3) = α*a_(2) a_(2) = α*a_(1) 右辺どうし、左辺どうしかけて 右辺、左辺の共通分を消して a_(n+1) = α^n*a_(1) 一個ずらして a_(n) = α^(n-1)*a_(1) 質問者 お礼 2011/06/07 22:33 丁寧な回答ありがとうございました。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 数列 漸化式 A(n+1)=2A(n)+n (初項A(1)=1) という数列があるとします。 この一般項の形を求めるのに、この漸化式を満たす数列{B(n)}=αn+βを設定して、 この漸化式に代入、恒等式から{B(n)=-n-1}がわかります。 この{B(n)}の式が最初の漸化式を満たすわけですから、 A(n+1)=2A(n)+n B(n+1)=2B(n)+nの両辺を引いて A(n+1)-B(n+1)=2(A(n)-B(n))という等比数列が成り立つので、 A(n)=3*(2のn-1乗)-n-1 となると思うのですが、 ここから質問です。 なぜ最初の漸化式を満たした、B(n)=-n-1 と これまた漸化式を満たしている、A(n)=3*(2のn-1乗)-n-1 が異なっているのでしょうか? 回答お願いいたします。 数列です 漸化式 a1=1, an+1=2an+2^n (n=1,2,3,……)で 定められる数列{an}がある。 (1) bn=an/2^n とおく。 数列{bn}の満たす漸化式を求めよ。 (2) 数列{an}の一般項を求めよ。 ↓の写真は(1)を解いてる途中です。 この先で困っています。 できる方は教えてくださると嬉しいです。 数列の一般項を求めたいです。 以下の漸化式を持つ数列を一般項で表したいです。 簡単に求め方が説明できる場合は求め方についてもお教えいただけますと幸いです。 a(n+1)=2*a(n)+(p*n+q)*2^n そもそも、一般項もとまるのでしょうか? 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 数列です。わからなくて困っています。教えてください。 数列です。わからなくて困っています。教えてください。 次の問題です。 整数からなる数列{an}を漸化式 a1=1、a2=3、an+2=3an+1-7an(n=1,2,3、・・・) で定める。 an が偶数となるnを決定せよ。 数列の問題です。 数列の問題です。 (1)1/7の少数第100位(十進法)の数字を求めよ。 (2)数列{a[n]}が漸化式 a[1]=1,14a[n+1]=7a[n]+1(n=1,2,3,・・・・) で定義されているとする。a[2010](を十進法で表すとき)の少数第603位の数字を求めよ。ただし、 log[10]2>0.301であることを用いてよい。 パソコンで打ち込んだことがありませんので、数列の打ち込み方がこれで良いのかわかりません。 a[n]の[n]は、底のつもりです。(書き方を教えて下さい。) (1)は、1/7=0.142857,100=6×16+4で(答)8となると思います。 (2)をできたら、わかりやすく教えて下さい。 よろしくお願いします。 数列の問題です。 数列の問題なのですが、わかりません。簡単でいいですので教えてください。それでも分からなければ、補足質問します。a1やanがちゃんと書けませんが、aが大きくて、1やnは小さいのです。よろしくお願いします。 問1. 初項がa1=1で、漸化式an+1=2(n+1)an(n=1,2,3・・・・)で定義される数列の一般項anを求めよ。 問2. a1=4, an+1=-2an-6(n=1,2,3・・・・)のように定義される数列{an}の一般項をもとめよ。 数列 (1),(2,3),(4,6,5),(8,12,10,7),(16,24,20,14,9),(32,48,40,28,18,11),… という群数列がある 第n群中にあるn個の数の和を求めよ 和SnはS(n+1)=2Sn+2n+1を満たすと回答に書いてあるのですが何故分かるのでしょうか? 確かめればあってることは分かるのですが、和の数列1,5,15,37,85,177,…を見てもこの漸化式が思い浮かびそうにないのですが、慣れなのでしょうか? 漸化式からの数列{a(n)} 漸化式a(1)=0,a(n+1)=2a(n)+1 (N=1,2,3........)によって数列{a(n)}を定めるときa(4)を求めよ。 この問題の解き方がいまだに理解できません。 ご協力よろしくお願いします。 数列です。わからなくて困っています。教えてください。 数列です。わからなくて困っています。教えてください。 次の問題です。 整数からなる数列{an}を漸化式 a1=1、a2=3、an+2=3an+1-7an(n=1,2,3、・・・) で定める。 an が偶数となるnを決定せよ。 nは3の倍数のときにanが偶数になると予想でき帰納法を用いるのだと教えていただいたのですが、その帰納法の立て方がわからず、教えていただけないでしょうか。普通どおりに立ててもうまくいかず困っています。どうかよろしくお願いします。 数列の収束 次のような問題です。 a_1=1,a_n+1=1/(1+a_n)の漸化式で定まる数列を考える。 このとき数列a_nが収束することを示せ。 こんな問題なのですが、分かりそうでわかりません。 実際、順に書き並べていくと分子・分母がフィボナッチ数列になり一般項は求められないこともないですが、複雑すぎてここから収束性を示すのは難しいと思います。 また、この数列は有界なことは分かりましたが単調数列じゃないので収束性は示せませんし・・・ だれか分かるかたいましたら解答お願いします。 数列の一般項 次の条件を満たす数列 { a_n }の一般項を5種類求めたいのです。 数列 { a_n } の条件 : a_1 = 1, a_2 = 2, a_3 = 3, a_4 ≠ 4 例えば、 a_(n+2) = a_(n+1) + a_n とおいて、隣接3項間漸化式を解けば、ひとつ求めることができるというアイデアは浮かぶのですが、そのほかにどうすれば求められるでしょうか? ただし、nについて場合分けをするのは無しです。 よろしくお願いします。 の漸化式で定義される数列{an}の・・・ 次の漸化式で定義される数列{an}の一般項を求めよ。 (1)a[1]=2, a[n+1]=a[n]-3 (n=1,2,3,・・・) (2)a[1]=1, a[n+1]=5a[n] (n=1,2,3,...) よろしくお願いします! 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 数列(一般項の帰納法による定義) お世話になっております。 数列の単元で、漸化式から帰納法によって一般項を定める問題例がありますが、これについて少し抽象的な質問をさせて下さい。 例題 次の条件によって定められる数列{An}の一般項を求めよ。 A[1]=2,A[n+1]=An/(1+An) (n=1,2,3,…) まず、実際に幾つかの値を得て、 A[1]=2, A[2]=2/3, A[3]=2/5,……となるから、 An=2/(2n-1)…(1) になると「推測」される。帰納法によってこれを証明する。以下略 ここで、質問です。 数列は、まず幾つかの具体的な値から第n項を定めることから学び始めますが、このことと今、第n項が(1)になると「推測」されることとは何が違うのでしょうか。推測だけではだめだから、帰納法で全ての自然数nについて(1)が成り立つことを示すのがこの問題の目的になるのでしょうが、そうなると、全ての数列について帰納法によって証明しなければいけないような気になってくるのですが、どんなものなのでしょう。 また、この問題は漸化式を拠り所に第n項を類推しますが、この例題ならば具体的な値から規則性が簡単に見出せるから良いのですが、パッと見ただけじゃ規則性の見出しにくい数列は、漸化式を解いて得られた第n項について、やはり帰納法によって証明する必要があるという捉えになるのでしょうか。 以上になります。言葉足らずなところがあるかも知れません。また、筋違いな質問でしたらご容赦下さい。宜しくお願い致します。 微分積分学・数列の問題 n≧0、p∈Nに対して、漸化式 a[0] = α > 1、a[n+1] = {p/(p+1)}a[n] + 1/{(p+1)(a[n])^p} で与えられる数列{a[n]}を考える。 この時lim[n→∞](a[n])はどうなるか。 この問いが分かりません。教えてください。 数学B、数列についての質問です 数列の一般項を求めるパターン、例えば特性方程式やズラして引くなど いろいろありますが、このような問題もパターンでしょうか? 【問題】 数列{An}は A1=6 A(n+1)=2An-3n+1 (n=1,2,3…) (1)Bn=An-3n-2(n=1,2,3…)で定められる数列{Bn}が等比数列であることを示せ (2){An}の一般項をもとめよ An=2^(n-1)+3n+2 となりますが A(n+1)=2An-3n+1 のように 漸化式に『数列』と『n』が混在している時 この問題では Bn=An-3n-2 として考える誘導がついていましたが どうしてこのような数列を考えたのでしょうか? これはたまたま上手くいくからなのでしょうか? それとも何か理由があるのでしょうか? 推測する数列 【問題】数列{A(n)}があって、A(1)=1,A(2)=2であり、連続する3項A(n),A(n+1),A(n+2)は、 nが奇数のとき等比数列をなし、nが偶数のとき等差数列をなす。 A(2m-1),A(2m) (mは自然数)を求めよ。 解答にはA(n)を推測し数学的帰納法でそれを示すというやり方があるのですが、 確かにその数列は条件を満たしますがそれ以外に他のA(n)が存在しないことを 十分に示せていないような気がします。 私は漸化式を解く解答が一番良いと思うのですが前者の方法でも解答としてはOKなんでしょうか? 数列の極限について 数列{a_n}を a_(n+1)=√a_n+1 a_1=1 によって定められる時、lim_n→+∞ a_n が存在するか否か考察せよ。即ち存在するならば存在することを示し、可能ならばその値を求め、存在しないならそのことを示せ。 という問題なのですが、一応自分は、上記の漸化式が収束すると仮定し、特性方程式で x=1±√5/2という答えを導き、a_1=1より、この数列は下から単調に増加しているから、解x=1+√5/2を持つ。 というところまでわかったのですが、ここから先がどうやったらいいかわかりません。 途中式とかできるだけ詳しい回答をよろしくお願いします。 数列 漸化式 教科書を参考にしても、以下の四問が分からなくってかなりあせってます。答えまで導いていただいたら幸いです。よろしくお願いします!! 次の漸化式で表された数列の一般項a(n)を求めよ (1) a(1)=1、a(n+1)=a(n) / a(n)+1 (2) a(1)=1、a(n+1) / n+1=a(n) / n +2 (3) a(1)=1、n・a(n+1) =(n+1)・a(n) + n(n+1) (4) a(1)=3、a(n+1) = 3a(n) + 3のn+1乗 a_1 = √3, a_{n+1} = √(2+a_n) で定まる数列 a_1 = √3, a_{n+1} = √(2+a_n) で定まる数列 {a_n} の一般項は? 上の漸化式は、どうやら一般項が求まるようですが、そのやり方がわかりません。 どなたかご教授お願いします。 漸化式の問題 漸化式の単元の問題でわからないものがあるので教えてください。問題は「数列{a_n}が次の漸化式を満たすとき、{a_n}の一般項を求めよ。 a_1=2 , a_n+1=2a_n+2n+1(n=1,2,3...)」というものです。 どなたか解法を教えて下さいませんか?よろしくお願い致します。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
丁寧な回答ありがとうございました。