- ベストアンサー
複素平面: 軌跡
複素平面上に点A ;1-i 原点O 、線分OAの垂直二等分線上L上に点P(z) |Z|=|z-(1-i)|を満たしますよね。 問題:w=2/zとする。点Pが直線L上を動くとき、点Qはどのような図形を描くか。 直観的に円だと思いますが、どう説明すれば。 |W-α|=cの形がなかなか示せなくて。 ご助言よろしく。
- みんなの回答 (1)
- 専門家の回答
複素平面上に点A ;1-i 原点O 、線分OAの垂直二等分線上L上に点P(z) |Z|=|z-(1-i)|を満たしますよね。 問題:w=2/zとする。点Pが直線L上を動くとき、点Qはどのような図形を描くか。 直観的に円だと思いますが、どう説明すれば。 |W-α|=cの形がなかなか示せなくて。 ご助言よろしく。
お礼
そうかZを代入か。 あたりまえみたいなことが気づかなかった。 どうもありがとう。