※ ChatGPTを利用し、要約された質問です(原文:ゴールドバッハの予想が証明出来ました。)
ゴールドバッハの予想の証明と素数の和表現
このQ&Aのポイント
ゴールドバッハの予想は、2より大きな偶数は必ず2つの素数の和で表現できるというものでした。この予想が証明されました。
具体的には、偶数を2つの等しい数に分け、一方からある数を引き、他方にその数を足すことで、引いた数と足した数が共に素数になるような数が必ず存在することが証明されました。
この証明は、素数の波と的のイメージを使って説明されます。さまざまな素数の波が的に当たる位置を表し、ある波が的に当たると別の波は的に当たらなくなるという性質が証明に用いられます。
2より大きな偶数は、2個の素数の和で必ず表せると、ゴールドバッハは予測しました。例えば14は、3+11=7+7と2つの素数の足し算で表現することが出来ます。
偶数は、等しい2つの数に分けることが出来ます。偶数(2Pとする)を2つに等分した(Pとする)一方から、ある数(A)を引き(引いた後をXとする)、他方にその数(A)を足し(足した後をYとする)、XとYが共に素数である様なAが必ず存在すれば、予測は証明されます。
Y=X+2Aと表されます。図を使ってイメージを伝えます。横線の左端を0、右端を2Pとし、中間点をPとします。元々、XとYはP上にあります。Pが素数であれば、XとYを動かさなくても済みます。その時、偶数(2P)=P(素数)+P(素数)と表されます。そうでない場合は、XをAだけ0に近づけなければならず、その分YはAだけ2Pに近づきます。
0からPまでの間には、素数が2から順番に3・5・7・11・13・17・19・23・29・・・Nと順番に並んでいます。2Pの位置からP方向に逆向きに2から順番に3・5・7・11・13・17・19・23・29・・R(0からP間に付した素数と区別する為Rとする)と番号を付けます。この2からRまでの位置が、Yの来る位置です。2からRの位置が、0から見て必ず1つは素数の位置であることを、証明すれば良いのです。
簡単にする為に、素数の波と的のイメージで説明します。0から発した2の波と横線が交わる2・4・6・8・・・の位置を、2の波が当たる位置と表します。2PからP間の2からRの位置を、的と表します。波が当たる位置に的があれば、その的を撃つことが出来ると表します。0から出発した2からNの素数の波で、2からRの的全てを、撃つことが出来るでしょうか。
Nの波では、2の的しか撃てません。NとRの間は、2Aで偶数です。N=Rなので、RをNの位置まで移動させると、Nの波は2Pから2AだけP方向に寄った位置に当たります。2Aは偶数なので、偶数の的にしか当たりません。素数の中で、偶数であるのは2のみです。従って、Nの波では、2の的しか撃てません。
また、2の波では2の的しか撃てません。2の波は、N(素数)には当たらず、NとRの間は2Aの偶数なので、Rにも当たりません。Rに当たらない2の波は、2の的に必ず当たり、それ以外の的には当たりません。
Rの的を2とNの波以外の波で、撃たなければなりません。仮に、Rに3の波が当たる様に設定します。すると、3の波は3の的には当たりません。2PからP方向に向けて発した3の波は、3の的を通りRの的には当たりません。ですから、3の波をRの的に当てるように動かすと、もう3の的には当たらなくなります。3の的に、仮に5の波が当たるように設定出来たとします。そうすると、5の波は5の的には当たりません。5の的に、また別の素数の波が当たる様設定出来たとすると、今度は、その番号の素数の的が撃てなくなります。そうして、次々と的を別の番号の波で撃つと、最後に的が1つ残ります。的は2の的以外ですが、波は2とNの波以外だからです。
従って、少なくとも1つの的は撃つことが出来ず、Yは必ず素数であることが可能です。このことより、2より大きな偶数は、2個の素数の和で必ず表せると言えます。
補足
適切な回答、ありがとうございます。説明が非常に複雑になる為、大変簡単に表現してしまいました。次の補足を追加させてもらいます。 1つの波で2つ以上の的を撃つように波を設定することや、7の波で11の的を、11の波で13の的を、13の波で7の的を撃つ様に、波を設定したとします。しかし、それでは全ての波が0を通過することはなくなります。1つの波が1つの的を撃つのなら、全ての波が全く偶然にも0を通過する可能性は残ります。 1つの波で1つの的を撃つ場合、全ての的を撃つことの出来る波の配置は、2Pの位置より2からNの波を発射した形以外にありません。2の波は2の的を、3の波は3の的を、nの波はRの的を射抜きます。しかし、この配置でも全ての波が0を通過することはありません。全ての波が1点に集まる位置は、発射してから2×3×5×・・・×Nの位置で、0よりも遥かに先の方です。その位置から2からNの波を発射して始めて、2からR全ての的を撃つことが出来ます。 従って、全ての的を撃つことは出来ず、Yは必ず素数であることが可能です。このことより、2より大きな偶数は、2個の素数の和で必ず表せると言えます。