ベストアンサー 三角形の相似 2011/01/23 17:46 図において.3点A.B.Cは円Oの円周上の点である. ∠ABCの二等分線と円Oとの交点をDとし.BC上にBE=DEとなる点Eをとる. ACとDB.DEとの交点をそれぞれF.Gとする (1)△ABF∽△GADであることを証明をしなさい. (2)BE=5cm.EC=3cmのとき.△GECの面積は△ABCの面積の何倍になるか.求めください. 解けなく困っています 画像を拡大する みんなの回答 (3) 専門家の回答 質問者が選んだベストアンサー ベストアンサー natto-710 ベストアンサー率50% (2/4) 2011/01/23 18:47 回答No.2 (2)です。 画像を拡大する 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 その他の回答 (2) 24moo-moo ベストアンサー率81% (13/16) 2011/01/23 19:08 回答No.3 (1) 円周角は等しいので <DBE=<GAD 題意より <DBE=<ABF よって <ABF=<GAD…(1) また、 <AFB=<DFC(対頂角) <DFCは△CFBの外角なので <DFC=<FCB+<FBC さらに、 <ADG=<ADB+<BDE <ADB=<ACB(円周角) より <ADG=<ACB+<BDE <ACB=<FCB(共通) <FBC=<BDE(二等辺三角形EBDの底角) であるから <AFB=<ADG…(2) (1)(2)より 2角が等しいので△ABF∽△GAD (2) △ABF∽△GADより <BAF=<AGD また、 <AGD=<CAB すなわち <CGE=<CAB…(1) また、 <GCE=<ACB(共通)…(2) (1)(2)より △ABC∽△GEC よって △GEC=△ABC*3/(3+5)=(3/8)△ABC 答え3/8倍 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 natto-710 ベストアンサー率50% (2/4) 2011/01/23 18:45 回答No.1 解答の書き方は自分で考えてくださいね^^適当なので(笑) 画像見辛かったらごめんなさい 画像を拡大する 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 図形の問題 AB=2、BC=√6、CA=3の三角形と円Oがある。 円Oは点Aを通り点Bで直線BCに接している。また、円Oは辺ACに対してA以外の交点Dを持つ さらに、∠Aの二等分線と辺BCの交点をEとする。 (1)三角形ABC∽三角形BDCを証明せよ (2)線分CDの長さを求めよ。またBE:ECを最も簡単な整数比で求めよ (3)線分AE,BDの交点をFとするとき、AF/FEを求めよ。また、三角形ABF、四角形CDFEの面積をそれぞれS,TとするときT/Sを求めよ さっぱりわかりません。どなたか回答よろしくお願いします。 相似の問題です ΔABCにおいて、∠Aの二等分線と辺BCの交点をD、∠Aの外角の二等分線と辺BCの延長線との交点をEとする。AB=8,BC=7、CA=6のとき、DEの長さをもとめよ。という問題なのですが、解答を見てみるとAB:AC=BE:CEとなっているのですが、理由がわかりません誰か教えてください。 中3 数学 図形 AB=3cm、AC=2cmの△ABCがある。∠Aの外角の二等分線とBCの延長との交点をDとしAC∦EDとなるような点EをABの延長上にとる。CD=4cmであるとき、 (1)∠BACの二等分線とBCとの交点をFとするとき、BFの長さを求めなさい。 (2)△ABFと△ADEの面積比をもっとも簡単な整数の比であらわしなさい。 以上二問です。よろしくお願いします。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 相似.三平方の定理 図のように.AB=6cm.BC=8cmの長方形ABCDがあり.∠Bの二等分線とCDの延長との交点をEとする また.BEとAC.ADとの交点をそれぞれP.Qとする. このとき.DEとCPの長さをそれぞれ求めてください 解き方の説明もあればうれしいです 外角の二等分線について △ABCにおいて∠Aの二等分線とBCの交点をD、∠Aの外角の二等分線とBCの延長との交点をEとする AB=14、BC=12、CA=10のとき、BEはいくらか とします 回答では、BE:EC=AB:AC=7:5とBC=12より、BD=7、BE=42としてるのですが、BEとECの長さが分からないのになぜ導けるのでしょうか? 三角形ABCにおいて(数学A) 三角形ABCがBC=6 CA=5 AB=7である 角Aの二等分線が対辺BCと交わる点をD、BからCAに引いた中線をBEとしADとBEの交点をOとする (1)OE/OBを求めよ (2)三角形ABCの面積をSとするとき三角形OBDの面積を求めよ 分からないので教えてください、答えは (1)5/14 (2)35/128S です、よろしくおねがいします。 円と相似の証明問題 (1)A.B.C.Dは円周上の点で孤AB=孤ACです。 弦AD.BCの交点をPとするとき△ABP∽△ADBとなります。 このことを証明しなさい。 (2)A.B.Cは円Oの円上の点でBCは直径です。 ∠ABCの二等線分をひき弦AC円Oとの交点をそれぞれD.Eとします。 このとき∠ABC=60°であれ△ABC∽△EDCとなります。 このことを証明しなさい。 求め方と答えを教えてください(^_^) 中学・数学 次の時、AEの長さを求めたいです。 解説を宜しくお願いします。 A,B,Cは円周上の点。 ∠BACの二等分線と円周との交点をDとする。 AB=AC=6cm DE=5cm 数学 相似の問題 学校のプリントの問題です。 下の図のように、円周上の3点A、B、Cを頂点とし、AB=AC=6cm、BC=4cmである △ABCがある。 ∠Bの二等分線と、辺AC、弧ACとの交点をそれぞれD、Eとし、点Cと 点Eを線分で結ぶ。 また、辺BCの延長と弦AEの延長との交点をFとする。 (4) AE:AFを最も簡単な整数の比で答えなさい。 解き方を教えてください! 中学の数学の問題です! 兄弟に聞かれたのですが、もう忘れてしまっていて解けなかったので、お恥ずかしながら質問させて頂きます。 大至急お願いします! 画像のような、 ∠BAC=90°の直角三角形ABCがある。 点Aから辺BCに垂直な直線をひき、 辺BCとの交点をDとする。 また、∠ABCの二等分線をひき、 線分ADとの交点をE、辺ACとの交点をFとする。 (問題) AE=4cm、ED=3cm、BE=10cmのとき、AF、EFは何センチか。 また、△AEFの面積は、△DBEの面積の何倍か。 数学の問題 すみませんが、解答と解説をお願いします。 問題 図のように、二等辺三角形ABCの∠Aの二等分線とBCとの交点を Dとする。また、AC上に点Eをとり、BEとADとの交点をFとする。 AE:EC=7:2のとき、x:yを求めよ。 平面図形と三角比 Q.△ABCにおいて、AB=2、BC=√19、AC=3とし、∠CABの二等分線と辺BCとの交点をDとする。 このとき、[∠CAB=120゜]であり、[BD=(2√19)/5]、[CD=(3√19)/5]である。 ADの延長と△ABCの外接円Oとの交点のうちAと異なる方をEとする。 このとき、[∠BEC=60゜]である。 これより、[BE=??]、[DE=??]である。 また、△BEDの外接円の中心をO'とすると、[O'B=??]であり、[tan∠EBO'=??]である。 -------------------- []内の??は解らなかった部分です。 それ以前の部分で間違えているかもしれませんが…(^^; ??部分の解き方を教えて下さい。 よろしくお願いしますm(__)m 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 中学の数学です △ABCにおいて、∠Aの二等分線と辺BCとの交点をD、∠Aの外角の二等分線と辺BCの延長線との交点をEとする。AB=8cm BC=7cm CA=6cmのとき、DEの長さを求めよ。 解説にBE:CE=AB:AC=4:3とあるのですが、その理由がわかりません! わかる方詳しい解説をお願いします。 三角形の面積の求め方 正三角形ABCが円Oに内接していて、 直径BDと辺ACの交点をE, ADとBCを延長し交点をFとする。 DEは1cm このときの三角形ABFの面積を求める問題があります。 (点Aを上方において、点Bを左下、点Cを右下として正三角形をとった場合 点Dは点Cの上に位置しています。) この問題でどういう流れでABFの面積を求めたらよいのかわかりません。 合同を使って解こう考えたのですが Aから辺BFに対して垂直に線を引いてその点をGとしたとき AGの長さの求め方がわかりません。 あとOEの長さも求めたいのですが、よくわかりません。 おしえてください。 三角形 (1) 円Oに内接する△ABCにおいて AB=5, AC=3, ∠A=120° ∠Aの二等分線がBC,円Oとの交点を それぞれD,Eとする。 ただしEはAと重ならない。 (1)BCの長さは 7 (2)DCの長さは 21/8 (3)ADの長さは 9/8 と15/8 (4)DEの長さを求めよ。 (1)(2)(3)は合っていますか? (4)を分かりやすく教えて頂けますか? 宜しくお願いします。 中二数学 図形 もう一問おねがいします。 △ABCで∠Bの二等分線と点Cにおける外角の二等分線の交点D。Dを通って辺BCに平行な直線と辺AB,ACの交点をE、Fとする。BE=6cm BC=7cmのとき、台形EBCFの周の長さを求めなさい。 三角形 AB=5, AC=3, ∠A=120 円Oに内接する△ABCにおいて AB=5, AC=3, ∠A=120° ∠Aの二等分線がBC,円Oとの交点を それぞれD,Eとする。 ただしEはAと重ならない。 (1)BCの長さは 7 (2)DCの長さは 21/8 (3)ADの長さは 9/8 と15/8 (4)DEの長さを求めよ。 (1)(2)(3)は合っていますか? 間違っている場合は、考え方も含めて わかりやすく教えて頂けますか? (4)を分かりやすく教えて頂けますか? 宜しくお願いします。 内心の求め方 三角形ABCのAB=3 BC=5 CA=7 ∠ABCの二等分線とACとの交点をDとすると AD:DC=3:5 ∠BCAの二等分線とBDとの交点をEとすると DE:ED=5:5 にするとおかしいのはどういうことでしょうか? 相似な図形の面積比 中学数学の問題です。 △ABCの辺AB,AC上に点D,EをそれぞれAD:DB=1:2,AE:EC=1:2となるようにとる。 BEとCEの交点をFとするとき、次の問いに答えなさい。 (1)△DFEと△CFBの面積の比を求めなさい。 (2)△ABCの面積は△DFEの面積の何倍か。 この問題の解法がわかりません。 どなたか教えてください。 数学の面積を求める問題です。 図で、三角形ABCの辺BCを直径とする半円Oと辺AB、辺ACとの交点をそれぞれD、Eとする。 頂点Bと点E、頂点Cと点Dをそれぞれ結び、線分BEと線分CDとの交点をFとする。 ∠ABC=60°、∠ACB=75°、BC=4cmのとき、線分ADと線分AEと弧DEで囲まれる図形の面積は何cm2か。ただし、円周率はπ(パイ)とする。 (解説も宜しくお願いします。) 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など