締切済み どなたか解答教えてください!! 2010/07/03 22:27 どなたか解答教えてください!! 確率変数Xが正規分布N(0,1)に従っているとき、Z=Xの2乗の確率密度関数を求めよ。 お願いします(>_<) みんなの回答 (1) 専門家の回答 みんなの回答 alice_44 ベストアンサー率44% (2109/4759) 2010/07/03 22:47 回答No.1 標準正規分布 X の確率密度関数は、 (1/√(2π))exp(-x^2/2)。 これを使って… 0≦Z≦z ⇔ -√z≦X≦√z より、 Z の累積分布関数は、 F(z) = ∫[-√z≦x≦√z](1/√(2π))exp(-x^2/2)dx。 Z の確率密度関数は、これを微分して、 f(z) = (d/dz)F(z) = 2・(1/√(2π))exp(-z/2)・(1/(2√z)) = (1/√(2πz))exp(-z/2)。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A どなたか解答教えてください!! どなたか解答教えてください!! 確率変数Xが正規分布N(0,1)に従っているとき、Z=X^2(Xの二乗)の確率密度関数を求めよ。 おバカなのでできるだけ詳しく解答をお願いいたします(>_<) 明日の統計試験で分からない所の解答をどうかお願い致します。 明日の統計試験で分からない所の解答をどうかお願い致します。 確立変数Xの確率分布は正規分布N(6,8X二乗)であり、確立変数Zの確立分布は標準正規分布N(0,1)である。標準正規分布表を使ってXとZに関する以下の問題に答えよ。 (1)確立変数Zが―0.9未満の値となる確立は。 (2)確立変数Zが0.9よりも大きく、2.99未満の値となる確立を答えなさい。 (3)確立変数Xが24.64よりも大きくなる値の確立。 (4)確立変数Xが0.8未満の値となる確立は。 以上よろしくお願いします。 確率密度関数の求め方を教えてください。 確率密度関数の求め方を教えてください。 期待値μ、分散σ^2 の正規分布を N(μ,σ^2)とする。 X~N(0,1)のとおき、確率変数 Y=X^2 の確率密度関数を求めよ。 という問題があるのですがよくわかりません。 どなたか解法と解答を教えてください。 お願いします。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 確率論の問題について (1)「確率変数Xが( )(0,a)上の一様分布U(0,a)に従うとき、また( )正規分布N(m,v)に従うとき、その標本化Zの分布密度関数を求めよ」 (2)「Xを標準正規分布N(0,1)に従う確率変数であるとする。Y=|X|の密度関数を求めよ。Yの平均と分散を求めよ」 というものなのですが(1)(2)ともにまったく手をつけることができません(泣)アドバイスなどお願いします(泣) 確率 X_1,X_2を独立な標準正規変数とするとき Z=(X^2_1+X^2_2)/2 の確率密度関数を求めよ。 という問題です、Z=X^2_1+X^2_2だけならカイ二乗分布と同じなんですが、計算したらとんでもないことになってしまいました、どなたかヒントやいいテキストの紹介でもいいのでお願いします、もちろん模範解答をいただければ幸いです。 密度関数の求め方(確率論) 問題 X,Y:標準正規分布N(0,1)を分布にもつ独立な実確率変数とします このときZ=X/Yの分布は1/π(1+x^2)を密度関数に持つことを示せ というものなんですが、 これはいわゆるCauchy分布です Zの分布関数を地道に計算すればいいんですが、 どうもうまくできません。 計算の経過も丁寧に解説してくれる人がいたらどうかお願いします ただ、公式を適用するとかいうのはなしでお願いします 確率変数Xは… 確率変数Xは自由度nのカイ二乗分布に従うとする。 このとき φ(t) = E(e^X) を計算せよ という問題に取り組んでいます。 E(e^X) = ∫e^x * f(x) dx ( f(x)は標準正規分布の確率密度関数) とすればあとは計算するだけと思ったのですが 次のことで迷いました。 「Xが自由度nのカイ二乗分布に従う」という文章は Σ(1->n) X^2 がカイ二乗分布に従うことを意味してるのか それとも Xがカイ二乗分布に従うのか どっちを意味するのだろうかと。 前者なら E(e^X) = ∫e^x * f(x) dx を計算していけばいいのですが、 後者だと 確率密度関数 にガンマ関数が含まれるようで 私の数学力では対応できません。 テキストや、web上では普通 Xは標準正規分布に従い、Χ^2(カイ二乗)がカイ二乗分布に従うと書いてあります。このことを考慮すると、後者の方が適しているような気もします。 アドバイスをいただけないでしょうか。お願いします。 正規分布に従う確率変数同士の積の分布について 確率変数X,Yがそれぞれ正規分布N(X|μx, σx^2),N(Y|μy, σy^2)に従っているとき,Z=X*YとおくとZの分布はどのような分布になるのでしょうか,またどのように導出すればよろしいでしょうか.参考になるHP等あればお教えください. 調べたところ,確率変数同士の和の分布について(Z=X+YのときのZの分布)は,畳み込みで求めるられ,また,正規分布に従う確率変数の自乗の分布はカイ2乗分布であることも分かりました. これらを参考にZ=X*YのときのZの分布を求めようと,畳み込み同様に変数変換を行い積分をしようとしたのですが指数部の中が複雑になり積分が手に負えなくなってしまいます... 統計学での確率変数Xと観測値xの使い分けについて 全く別物だと思うのですが、理解できなくて質問いたします。 確率変数Xは、その値をとる確率が決まっている変数であり、 観測値xは、ただ実際に出現した値、であることは理解しています。 確率密度関数では横軸が確率変数であり、Pr(X)の値が縦軸である、というのがわかりやすかったです(以下ブログを参考)。 https://bellcurve.jp/statistics/blog/14006.html 1)しかし、この考えでは次のブログのことを理解できませんでした。 http://igakubugakushi.com/ctl1/ 互いに独立であり、同一分布に従う確率変数X1、、、Xnとあります。1つの確率密度関数には、複数の観測値xを決まった確率で取りうる確率変数Xが1つある理解でした。1つの確率密度関数に複数の独立の確率変数があるというのはどういうことでしょうか。 2) また、同じブログの「母集団が正規分布だった場合」 http://igakubugakushi.com/interval-estimation1/ X1~N(μ、σ²) : Xn~N(μ、σ²)とすると、正規分布の再生性により、 x1~+xn~N(nμ,nσ²) よって、x⁻(観測値xの平均)~N(μ,σ²/2) との記述があります。複数の確率密度関数が同じ正規分布に従っている、のは一先ずおいておくとして、そのあとの正規分布を再生する観測値x1~xnは、どの確率分布から出てきたものなのでしょうか? 3)また、2)で出てきた、x1~+xn~N(nμ,nσ²) → x⁻(観測値xの平均)~N(μ,σ²/2) になるのはなぜでしょうか?x⁻~N(μ、σ²)ではないですか?(nで全てを割るのであれば) ただのブログの書き間違えなのか、私がよくわかっていないのかわからず、解説いただきたいです。 【至急】正規分布の問題です 標準正規分布N(0,1^2)の確立密度関数をf(t)とする。すなわち、f(t)=1/√2π・exp(-t^2/2)とする。f(t)について、∫ t・f(t)dt=0 と∫ t^2・f(t)dt=1が成り立つ。 (どちらとも∫のー∞から+の無限大まで) このとき (1)確率変数Zは標準正規分布N(0、1^2)に従っているとする。この時、 E(Z)=0、 V(Z)=0を示せ。 (2)確率変数Xは正規分布N(m、σ^2)に従っているとする。このとき、E(X)=m、 V(X)=σ^2を示せ。 この問題がわかりません。どなたかよろしくお願いします。本当にお願いします 確率密度関数に関する問題。 超基礎問題なのですが理解できません… ご教授よろしくお願いします。 (1)確率変数Xの密度関数が f(x)=1/2,-1<x<1 0,その他の場合 であるとする。 このときXの平均、分散を求めよ。 (2)Xは標準正規分布N(0,1)に従う確率変数であるとする。下の問いに答えよ。 (a)Xの確率密度関数を書け。 (b)X^2の確率密度関数を求めよ。 (3)X,Yは独立な確率変数であり、Xはパラメータλ1のポアソン分布Po(λ1)に従い また、Yはパラメータλ2のポアソン分布Po(λ2)に従うとする。 このときX+Yの確率分布を求めよ。 正規分布の再生性について質問というかあっているか疑問です。(確率・統計 正規分布の再生性について質問というかあっているか疑問です。(確率・統計) 確率変数X、Yは独立、同分布で正規分布N(30,5^2)に従うとき、確率P(25<=X+Y<=65)を求めよという問題なのですが。 自分で解いてみたところ、 確率変数X+Yの確率分布は正規分布N(60,50) :50=(5√2)^2 P(25-60)/5√2<=X+Y-60/5√2<=65-60/5√2) =P(-35/5√2<=X+Y-60/5√2<=5/5√2) =P(-7/√2<=Z<=1/√2) =P(-4.96~<=Z<=0.70~) ↑となったのですが自分の使っているテキストの標準正規分布表には3.09くらいまでしかありません。これって出題ミスではないですか? それとも自分がどこかで間違っているでしょうか? 教えて下さい。 ^2は二乗という意味です>< お願いします 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム カイ二乗分布 確率変数Xが自由度nのカイ二乗分布に従うとき φ(t) = E(e^(tX))を求めよ という問題に取り組んでいます。 以下のように考えました。 Xがカイ二乗分布に従うので X = X1^2 + X2^2 + X3^2 + ... + Xn^2 とおけば E(e^(tX)) =E( e^(t(X1^2 + X2^2 + X3^2 + ... + Xn^2 ))) =E(Π(1->n) e^(t(Xi^2)) ) = Π(1->n) E( e^(t(Xi^2)) = (∫(-∞->∞) e^(tx^2) f(x) dx )^n (ここでf(x) は標準正規分布N(0 1)の確率密度関数) = (∫e^(tx^2) * (1/√(2π)) e^(-x^2) dx ) ^n とここまで計算できたのですが、 この後が計算できません。 ネット上で調べたのですが、カイ二乗分布の積率を求めるときは たいてい、カイ二乗分布の確率密度関数を使っています。 上記の計算で 解きたいのですが アドバイスをいただけないでしょうか。 お願いします。 どなたかわかりませんか? 確率変数Xは正規分布N(μ、σ^2)に従うものとする。ここで、新たな確率変数YをY=X/nと定義してYが従う 確率密度関数f_Y(y)とlim_(n→∞)・σ^2_Y 教えて下さい。 [統計学]カイ2乗分布 カイ2乗分布について多くの入門的教科書では、 > 確率変数 X1, X2 が正規分布 N(0,1) に従うとき、 > Y = X1^2 + X2^2 で与えられる確率変数 Y はカイ2乗分布となり、 > 以下の式で表される: > (分布関数) のような説明がなされていると思います。 このとき、X1, X2 が異なる正規分布 N(e1, v1), N(e2, v2) に従う場合には、 そのカイ2乗分布はどのような式で与えられるのでしょうか。 (e = X の平均値, v = X の分散) おそらく簡単すぎるために、説明が省かれているのだろうと思うのですが、 自分にとっては簡単ではありません。 詳しく載っている書籍・ウェブサイトを挙げるだけでも構いませんので、 御教示お願いいたします。 確率変数、分布関数と密度関数について 独学で統計学を勉強していますが、解法がわからず煮詰まってしまい、困っている問題がありますので、質問させていただきます。 確率変数XがX~U[0,1]のとき (1)確率変数Z=5Xの分布関数、密度関数を求めよ。 (2)確率変数Y=X^2の分布関数を求めよ。 よろしくお願いいたします。 確率統計についての質問です。(標準化正規分布) 確率変数X,Yは独立でそれぞれ正規分布N(5,2^2),N(3,1^2)に従う時 確率P(6<=X+Y)を求めよ。という問題の解答についてなのですが、 P(6<=X+Y)=P( (6-8)/√5 <= (X+Y-8)/√5 )=P( -2/√5 <=Z) =P( -0.89 <= Z )=0.5+0.3133=0.8133 の最後のP( -0.89 <= Z )からなぜ 0.5+0.3133という式が出てくるのか分かりません。 正規分布表を見たのですが、さっぱりわかりません。よろしくお願いいたします。 以下の問題をお願いします さっぱりわからないのでどうか教えてください。 (1)確率変数Xが標準正規分布に従うとき、|X|の密度関数を求めよ (2)確率変数Y=log(X)が平均μ、分散σ^2に従うとき、Xの密度関数、平均、分散を求めよ (3)確率変数Xの平均が存在するとき、 lim(x→∞)[x(1-F(x))]=0 ただし、F(x)はXの分布関数 独立関数変数の問題を解いてるのですが・・・ 独立関数変数の問題を解いてるのですが・・・ X1,X2,....,Xn,....は標準正規分布に従う独立関数変数とする P(│X1+・・・+Xn/n│≦ε)=2∫ε√n 1/√2π・eの-x二乗/2 dx 0 を示せ(上はインテグラルの範囲が0からε√nという意味です) X1+・・・+Xnの大きさが0.01より小さい確率が0.95以上であるためにはnはどの程度の大きさが必要か決定せよ。I(z)=∫z 1/√2π・eの-x二乗/2 dxとおくと、I(1.96)=0.475となることを参考にして 0 よい。 みにくくて申し訳ありません。 教科書とにらめっこ状態なので誰かお助けお願いします。 互いに独立な時の確率密度関数 大学で出された問題でさっぱり分からなかったので、お力添えください。 (問題) 正規分布に従う確率変数XとYは、ともに分散は1であるが、Xの平均値は-1、Yの平均値は1である。 互いに独立であるX、Yから作られる確率変数ZをZ≡X/√2+√2Yで定義するとき、Zの確率密度関数pz(z)を求め、その概形をグラフに描け。 簡単だとは思いますが、よろしくお願いします。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など