- ベストアンサー
3けたの自然数があり、この数の百、十、一の位の数の和が、3の倍数になる
3けたの自然数があり、この数の百、十、一の位の数の和が、3の倍数になるとき、もとの3けたの数は、3の倍数である。このわけを文字を使って説明しなさい。という問題なのですが、どう解けば良いのでしょうか?中学2年の数学の問題なのですが・・・
- みんなの回答 (2)
- 専門家の回答
3けたの自然数があり、この数の百、十、一の位の数の和が、3の倍数になるとき、もとの3けたの数は、3の倍数である。このわけを文字を使って説明しなさい。という問題なのですが、どう解けば良いのでしょうか?中学2年の数学の問題なのですが・・・
お礼
大変よくわかりました。ありがとうございました。