- ベストアンサー
中学数学の問題です。教えてください。
(1)各位の数の和が3の倍数である自然数は3の倍数である。 百の位の数をa 、十の位の数をb、一の位の数をcとして、訳を説明しなさい。 (2)連続した3つの奇数の和は3の倍数になることを説明しなさい。 (3)一の位が0でない3けたの自然数がある。 この自然数から百の位の数と一の位の数をいれかえてできる数をひくと答えは99の倍数になる。 この訳を説明しなさい。 すべてご回答いただけなくても わかる範囲で結構です。 先日、学校のテストの対策で頂いたプリントに出されていた問題なのですが 風邪で学校をお休みしていて、聞き逃してしまいました。 よろしくお願いします。
- みんなの回答 (4)
- 専門家の回答
質問者が選んだベストアンサー
- ベストアンサー
(1)3桁の整数は、100a+10b+cとあらわせる。各位の和が3の倍数というのは、a+b+c=3nとあわらせる。(nは自然数) この二つの式から、100a+10b+c=99a+9b+a+b+c =99a+9b+3n 99a+9b+3n=3(33a+3b+n) 33a+3b+nは整数なので、各位の数の和が3の倍数である自然数は3の倍数である。 (2)連続した3つの数のうち、一番最初をnとする。 和はn+(n+1)+(n+2)=3n+3 3n+3=3(n+1) n+1は整数のため、連続した3つの奇数の和は3の倍数。 (3)3桁の自然数は、100の位をa、10の位をb、1の位をcとすると、100a+10b+cとあわらすことができる。100の位と1の位を逆にした数は、100c+10b+aとあらわせる。前者から後者を引くと、 99a-99c となる。これは、99(a-c)となり、a-cは整数なので、一の位が0でない3けたの自然数から百の位の数と一の位の数をいれかえてできる数をひくと答えは99の倍数になる。
その他の回答 (3)
- edomin7777
- ベストアンサー率40% (711/1750)
#1です。 因みに、 (1) http://okwave.jp/qa/q6800075.html (2) http://okwave.jp/qa/q6800307.html (3) http://okwave.jp/qa/q6800328.html ※全部このカテゴリで、昨日の投稿です。
お礼
ご回答ありがとうございました。 検索の仕方が良くなかったみたいで・・・すみません。
- kiritanikaren
- ベストアンサー率0% (0/1)
(1)はすみません、分かりません。 (2)載せます。説明はできないので、式だけですが。 連続した3つの奇数をn-1、n-3、n-5とすると、 n-1+(n-3)+(n-5) =n-1+n-3+n-5 =3n-9 =3(n-3) 3×自然数となり、連続した3つの奇数は3の倍数である。 (3)載せます。これも式だけですが。 百の位の数をa、十の位の数をb、一の位の数をcとすると、 元の数は100a+10b+c 入れかえた数は100c+10b+aとなる。 100a+10b+c-(100c+10b+a) =100a+10b+c-100c-10b-a =100a-a+10b-10b-100c+c =99a-99c =99(a-c) 99×自然数となり、これは99の倍数である。 これでよければ使ってください。
お礼
ご回答ありがとうございます。 何人かの方のご回答により より良くわかりました。 助かりました。 ありがとうございました。
- edomin7777
- ベストアンサー率40% (711/1750)
この数日間で何回も出ている問題。 なぜ、過去の質問を見ないのだろう…? (1) 自然数を 100a+10b+c とすると、 (99+1)a+(9+1)b+c =99a+a+9b+b+c =3(33a+3b)+(a+b+c) このとき、3(33a+3b)は3で割り切れるので、(a+b+c)が3で割り切れれば元の自然数も3で割り切れる。 (2) 連続した3つの奇数の真ん中の奇数を 2n+1 と置くと、3つの奇数は 2n-1,2n+1,2n+3 と表せる。この3つの奇数の合計は 2n-1+2n+1+2n+3 =6n+3 =3(2n+1) 3(2n+1)は3で割り切れるので、3の倍数。 (3) 元の自然数を 100a+10b+c とすると、入れ替えて出来る数は 100c+10b+a 引き算をすると、 100a+10b+c-(100c+10b+a) =100a+10b+c-100c-10b-a =99a-99c =99(a-c) 99(a-c)は99で割り切れるので、99の倍数。
お礼
ご回答ありがとうございました。 数学回答で検索しましたが見落としていたみたいです。 すみません。 詳しいご回答ありがとうございました。 わかりやすかったです。
お礼
ご回答ありがとうございます。 いろんな回答例があり より良くわかりました。 助かりました。 有難うございました。