ベストアンサー 過去問を解いているんですが、答えがないため困ってます(>_<) 2010/01/25 23:17 次の極限値を求めよ。 lim e^x-cosx x→0  ̄ ̄sinx ̄ ̄ 問題分かりにくいですかね? まだ自信ない問題あるんで、質問する可能性大です(><) みんなの回答 (3) 専門家の回答 質問者が選んだベストアンサー ベストアンサー tra_tata ベストアンサー率50% (147/292) 2010/01/25 23:53 回答No.1 この手の問題はロピタルの定理であっさり解けます。 まずは以下のページを見て下さい。 http://ja.wikipedia.org/wiki/%E3%83%AD%E3%83%94%E3%82%BF%E3%83%AB%E3%81%AE%E5%AE%9A%E7%90%86 (与式)=lim_[x→0] (e^x+sinx)/cosx =1 知っていればとても便利な定理ですよ。 質問者 お礼 2010/01/26 00:57 ありがとうございます! 正解してましたー(^ε^)-☆ 今後もよろしくお願いします(^O^)/ 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 その他の回答 (2) 112233445 ベストアンサー率40% (6/15) 2010/01/26 12:11 回答No.3 解き方が分かるというのでなく興味があったので、勉強のために回答し ご意見をくださればと思います。 結局はロピタルを使っていることになるとおもいますが、以下のようにしました。 f(x)=e^x-cosx、g(x)=sinxとおく。 与式=lim{f(x)-f(0)}/{g(x)-g(0)} =f'(0)/g'(0)=1 質問者 補足 2010/01/26 14:01 ありがとうございます。 f(x)-f(0)}/{g(x)-g(0)のf(0)とg(0)は、cosx、sinxのことですか? 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 Tacosan ベストアンサー率23% (3656/15482) 2010/01/25 23:54 回答No.2 うん, わかりにくいね. (e^x - cos x)/sin x の x→0 の極限, だよね. ロピタルが使えれば一瞬だけど, そうでないとあてどうしよう. 質問者 お礼 2010/01/26 00:58 すみません(><) ロピタルの定理使って答え出しました☆彡 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A この問題を解いてください 次の関数の極限値を求めなさい。 1.lim(x→0)(1-cosx)/x^2 2.lim(x→0)arctanx/x 3.lim(x→π)sinx/(π-x) 4.lim(x→0) (sinx-tanx)/x^3 5.lim(x→0){e^x+e^(-x)-2}/x^2 6.lim(y→0)(1+a/y^2)^y 7.lim(n→0)n{a^(1/n)-1} (a>1) nは整数 よろしくお願いします! 極限値を求める問題 いつもみなさんの問題解決のためのアイデアに感心しております。 今日行き詰まった問題は、以下のものです。 極限値を求めよ lim[x→0](1/x - 1/sinx) 変形すると lim[x→0]((sinx-x)/xsinx) 0/0の形になるから先日教えていただいたロピタルの定理を使って上下を微分し、 lim[x→0](cosx/(sinx+xcosx)) さらに上下を微分し lim[x→0](-sinx/(cosx+cosx-xsinx)) と置き換えて 答え”0”で良いのでしょうか? よくご存じの方、”正解”がついていないので、ご教示をお願いします。 極限値について 極限値についておしえてください。 (1)lim(n→∞)(√(n^2+n+1)-n) =lim((n^2+n+1)-n^2)/√(n^2+n+1)+n) =lim n+1/(√(n^2+n+1)+n) ここまでしかわかりません。 (2)lim(x→0) tanx-sinx/x^3 tanx-sinx=(sin/cosx)-sinx =(sinx-sinx cosx)/cosx =(sinx(1-cosx))/cosx より (tanx-sinx)/x^3 =(sinx(1-cosx))/x^3(cosx) =(1/cosx)・(sinx/x)・(1-cosx)/x^2 ここまでしかわかりません (3)lim(x→∞) x{log(2x+1)-log2x} =xlog(2x+1/2x) =log(1+(1/2x)^2 ここまでしかわかりません (4) lim(x→1) [-x^2+2x+2] ([ ]はガウス記号) ガウス記号についてはよくわからないのですが、 ガウス記号を考えないでとくと -x^2+2x+2 =-((x-1)^2)+3 ここまでしかわかりません ご親切におしえてください おねがいします 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 極限値の問題です! 次の極限です! lim(1-cosx)/x (x→0) 値はわかっているので、証明をお願い致します。 私も作りましたが、普通は、sinxの極限にしますよね。 できれば、そうでない方法でお願い致します。 いろいろな方がsinxを使わないで、何種類ぐらいできるか興味があるのです。よろしくお願い致します。 ロピタルの定理の問題が分かりません。 ロピタルの定理を用いて、次の不定形の極限値を求めよ。 lim(x->0)(sinx-tanx)/x^3 と言う問題なのですが、計算すると lim(x->0)((cosx)^3-1)/3x^2(cosx)^2= lim(x->0)-(sinx)^2(cosx)^2/(2x(cosx)^2)-(x^2)sin2x= lim(x->0)-sin2xcos2x/(cosx)^2-2xsin2x-(x^2)cos2x= lim(x->0)-2cos4x/-3sin2x-6xcos2x+2(x^2)sin2x= lim(x->0)2sin4x/3cos2x+4xsin2x+(x^2)cos2x=0 となってしまいます。 正解答は-1/2になるようなのですが、どなたかお教え下さい。 関数の極限について 見辛くて申し訳ないです。 lim (cosx -1)/(xsinx) x→0 の極限を求める問題なのですが。 (sinx)/x →1 (x→0)と (1+cosx)/x^2 →1/2 (x→0)を使って解くと (cosx-1)/xsinx=(cosx-1+1-1)/xsinxの変形から-∞になるのですが、 解答は 両辺に1-cosxを掛けて分子を(sinx)^2にして-1/2となっていて どうしても答えが合いません。 (解答にあわせた解法で解いても納得できません) どうすると-1/2に収束するのか教えて下さい。 ロピタルの定理を用いた極限の問題 前回、同じような質問をしたのですが途中の計算が理解出来なかったので質問させていただきます。 次の極限を求めよ (4) lim[x→∞] (logx)^n/x (5) lim[x→0] (1/x-cosx/sinx) (6) lim[x→+0] x^x ロピタルの定理を使って下さい。(途中式も出来れば) お願いします。 微分係数の定義を用いた極限 文字の書きかえがわからないので質問します。問題は、 lim(x→0){e^(x^2)-1}/{1-cosx}・・・(1)の極限を求めよ。というものです。 解答では、{e^(x^2)-1}/{1-cosx}=(1+cosx){{e^(x^2)-1}/1-cos^2x} =(1+cosx){e^(x^2)-1}/{sin^2x}=(1+cosx)(x^2/sin^2x){{e^(x^2)-1}/x^2}として、 (1)=lim(x→0)(1+cosx)(x/sinx)^2{{e^(x^2)-1}/x^2}=2*1^2*1=2と書いてあります。 分からない点は、lim(x→0){{e^(x^2)-1}/x^2}=1です。lim(x→0){(e^x-1)/x}=1・・・(2)は問題の直前に証明がのっていました。(2)においてxをx^2に書きかえたら、 lim(x→0){{e^(x^2)-1}/x^2}=1になるという説明は納得できそうでできません。 数学IIの教科書にも余弦の2倍角の公式より、sin^2α=(1-cos2α)/2 ここでαをα/2に書きかえて、半角の公式を導ています。しかし、 y=log10(1-3x)を微分せよで、解答はy'=(1-3x)'/{(1-3x)log10}=3/{(3x-1)log10}になります。文字を書きかえるだけなら、y'=1/{(1-3x)log10}になると思います。どういう基準で文字を書きかえて公式が成り立つ、成り立たないを判断するのでしょう?どなたか教えてください。おねがいします。 高校数学、極限値の計算の基本 (問題)lim(x→0)(cosx-cosx^2)/(x-x^2)を求めよ。 計算過程で、疑問があります。初心者なので、極限の基本についてです。(長文になってしまいました。ごめんなさい) f(x)=cosxとすると、f(x)はすべての実数において微分可能で、f‘(x)=-sinx (ア)x<0のとき、 x<x^2のより、[x,x^2]において、平均値の定理を用いると、(cosx^2-cosx)/(x^2-x)=-sinθ1、x<θ1<x^2を4みたすθ1が存在する。 (1)lim(x→ー0)x=lim(x→ー0)x^2=0より、 lim(x→ー0)θ1=0。 (2)lim(x→ー0)(cosx^2-cosx)/(x^2-x)=lim(x→ー0)(-sinθ1)=-sin0=0と問題集の解答で書かれています。 (疑問) (1)lim(x→ー0)x=lim(x→ー0)x^2=0より、 lim(x→ー0)θ1=0。についてはいわゆる挟み撃ちの定理によってlim(x→ー0)θ1=0つまり、xをx<0から0に近づけていった時のθ1の極限値は0ということです。 (2)そこで、本題のlim(x→ー0)(cosx^2-cosx)/(x^2-x)=lim(x→ー0)(-sinθ1)を考えるわけですが、私は(1)で x→ー0としたとき、θ1は0に近づく、ということを求めたのですが、ここで、lim(x→ー0)(-sinθ1)を考える際に、極限ではどちらから近付くかが違いを生むことがあると思って、わざわざθ1→ー0、および、θ1→+0の場合を考えて、lim(x→ー0)(-sinθ1)=0としたのですが、これでよいのでしょうか?間違えなら、どう考えるのが一番良いのでしょうか? 極限 問い:lim[x→0] 1/sinx-1/(x+x^2) 私の回答: 1/sinx - 1/x + 1/(x+1) ←部分分数分解 =(x-sinx)/xsinx + 1/(x+1) ここで、前者の項だけ考える。 x→0のとき x-sinx →0 xsinx→0 よりロピタルの定理を用いる。 微分して (1-cosx)/(sinx+xcosx) もう一度微分して sinx/(2cosx-xsinx) →0 (x→0) ロピタルの定理より、前者の項は (x-sinx)/xsinx →0 また後者の項は 1/(x+1)→1 (x→0) よって、 lim[x→0] 1/sinx-1/(x+x^2)=1 グラフは確認済みなので、答えは合っています。 導き方はこれでよいのでしょうか。 極限を前者と後者のように分けて考えても、大丈夫ですか? 1度に x→0 を考えていれば問題ないと思うのですが、自信がありません。 ロピタルと微分で極限値を・・・。 次の極限値を求めてみたいのですが・・。 lim x→+0 (e^-1/x)/x lim x→∞ (tanx-x)/(x-sinx) 両方ともうまく∞/∞や0/0にすることが出来ずに悩んでいます。どう持ち込んでいけばいいのかお願いします。 数学の極限値の問題を解いてほしいです。 数学の極限値の問題を解いてほしいです。 以下の問題です。 lim {(sinx-x)/(sinx)^3} 収束(x→0) lim x^x 収束(x→+0) lim (sinx)/x 収束(x→0) lim {(sinx)/x}^{1/(x^2)} 収束(x→0) lim √(x+2)-√(x) 収束(x→∞) lim (x-sinx)/(x^3) 収束(x→0) lim (e^x-e^4)/(x-4) 収束(x→4) できれば解く過程もよろしくお願いします。 全部とは言いません。できるものだけでも構いませんので、よろしくお願いします。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 極限です。 (1)lim(n→∞)3^(n-1)-4^(n+1)/2^(2n+3)+3^(n+2) (2)lim(n→∞)(√(x^2+3x)+x) (3)lim(x→1)(1/(x^2+x-2)-1/2x^2-x-1) (4)lim(x→3+0)9-x^2/√(3-x)^2 (5)lim(x→0)(1-cosx)sinx/x^3 この極限の問題が分かりません。 どなたか解説よろしくお願いいたします。 微積分 1.lim(logx/x^3) (x→∞) の極限を求めるにはどうすればいいんでしょうか?logxを微分して1/xを使うような気がするんですけど、どうしたらいいかわかりません。よろしくお願いします。 2.∫(1/(1+sinx+cosx))dx はどうしたらいいですか?分母を置き換えて解こうと思ってもどうしていいか分かりません。 よろしくお願いします。 どうか教えてください。 どうか教えてください。 極限値を求める問題です。 (1)lim[x→0]x^(sinx) (2)lim[x→0]x*log{(x-1)/(x+1)} (3)lim[x→0]{(1/sinx)-(1/x)} 次のテストででそうなのですが、解き方がわかりません。 途中過程も含めて、教えて頂きたくよろしくお願いします。 どうぞよろしくお願いします。 指数関数×三角関数の積分 (e^x)×(cosx)の部分積分を解く問題なのですが、 I=∫(e^x)×(cosx)dx =(e^x)(cosx)+∫(e^x)(sinx)dx =(e^x)(cosx)+(e^x)(sinx)-∫(e^x)(cosx)dx ∴I=1/2(e^x)(cosx+sinx)+C と、模範解答に書いてあったのですが、 (e^x)(cosx)+(e^x)(sinx)-∫(e^x)(cosx)dxが1/2(e^x)(cosx+sinx)+Cになる、という所がいまいちわかりません。 初歩的な質問で申し訳ないのですが、教えて頂けたら有り難いです。 あと、似た問題で(e^x)(sinx)の積分を解く問題もあったのですが同じように1/2(e^x)(-cosx+sinx)+Cという形になったりするのでしょうか。 極限値 1.lim(x→0)tanx/x 2.lim(x→0)(1-cosx)/x^2 3.lim(x→0){1-cos(1-cosx)}/x^4 1.lim(x→0)cosx*sinx/x=1 2.lim(x→0)(sinx/x)^2*1/(1+cosx)=1/2 で合っているでしょうか? あと3がわかりません。どなたかアドバイスをお願いします。 極限の問題 次の極限を求めよ。 lim[x→0](sinx^0)/(x^0)=?? lim[x→0](sinx)/(x)=1 を使用すると思うのですが、どのようにしたらよいのでしょうか? x^0=1 sinx^0=π/2 ですよね? 0^0=? ゼロのゼロ乗っていったいどうなるのでしょうか? どなたか教えてください。 解析学(テーラー展開等)の問題です。 解析学(テーラー展開等)の問題です。 よろしくお願いします。 f(x)=1/√(x+1)のx=0のまわりのテーラー展開をx^3の項まで求めよ。 x=0のまわりのテーラー展開を用いて、次の極限値を求めよ。 lim(x→0){(sinx-x)/(e^x-1-x-(x^2/2))} ロピタルの定理を用いて、次の極限値を求めよ。 lim(x→0){(e^x+e^(-x)-2)/x^2} よろしくお願いします。 ロピタルの定理 極限の問題で、次の2つの問題が解けません。 (1)lim[x→0] ((tanx -x)/(x-sinx)) (2)lim[x→0] (1/(sinx)^2 -1/x^2) 答えが(1)2 (2)1/3 らしいのですが途中計算がよくわかりません。 おそらくロピタルの定理を使うのでしょうが、途中で行き詰ってしまいます。 だれか教えてください。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
ありがとうございます! 正解してましたー(^ε^)-☆ 今後もよろしくお願いします(^O^)/