翼を通り過ぎる流体の2次元定常流れの解析
下の図で示した2次元定常流れで翼を通り過ぎたあとの流体の密度ρ1,流速u1,圧力p1がわかりません.
領域Vにある流体は矢印の方向へ流れており十分な上流では密度ρ0,流速u0,圧力p0となっています.図にある翼は等間隔Hで並べられており,翼が受ける抗力はFx,揚力はFyと設定されています.流体は十分な下流では水平であるx軸から角度θ(<90°)下方へ向いた一様流となっています.この時の密度ρ1,流速u1,圧力p1を運動量保存則から求められないかと考えたのですが,x方向の流速u,y軸方向の流速vとした場合で
x方向の運動量保存則より
∂(ρudxdy)/∂t=(ρu^2dy+ρuvdx)ー{(ρu^2dy+∂(ρu^2)dx/∂x)dy+(ρuvdx+∂(ρuv)dy/∂y)dx}ーFx
⇔∂(ρu^2)/∂x+∂(ρuv)/∂y=ーFx/dxdy
y軸方向の運動量保存則より
(中略)⇔∂(ρuv)/∂x+∂(ρv^2)/∂y=ーFy/dxdy
からどのようにしてρ1やu1を求めればよいのかわかりません.p1については前の2つの値がわかればベルヌーイの定理から求められそうだということは予測できるのですが….
問題の問では「領域Vに流入・流出する運動量のy成分とV内の流体に働くちからのy成分の釣り合いを考えることで下流の流速u1,密度ρ1を求めよ」とあります.
長い式が出てきましたが回答のほどよろしくお願い致します.