- 締切済み
文字式の変形で全く検討がつきません
数学的帰納法の問題で 解説を見ても全く理解出来ない所が有ります。 問 2以上の全ての自然数nについて、不等式 Σ1/r^3(r=1からn)< 2-1/n^2 が成り立つことを数学的帰納法を用いて証明せよ 解説は Σ1/r^3(r=1からn)< 2-1/n^2・・・(1) [1]n=2のとき (1)の左辺=1+1/8=9/8 右辺=2-1/4=7/4 よって(1)は成り立つ [2] n=kの時(1)が成り立つと仮定する n=k+1の時を考えると、仮定から Σ1/r^3(r=1からk+1まで) =Σ1/r^3(r=1からk)+1/(k+1)^3< 2-1/k^2+1/(k+1)^3・・・(2) 見にくくて申し訳ないですが、 なぜ(k+1)のとき(2)の右辺が理解出来ません。 どなたかよろしくお願いします。
この投稿のマルチメディアは削除されているためご覧いただけません。
- みんなの回答 (2)
- 専門家の回答
みんなの回答
- Mr_Holland
- ベストアンサー率56% (890/1576)
回答No.2
- settheory
- ベストアンサー率48% (13/27)
回答No.1