- みんなの回答 (6)
- 専門家の回答
質問者が選んだベストアンサー
> 左辺のAHには16をかけないのですか? 他の回答者さんの揚げ足を取るようで申し訳ないのですが、#1さんが >分数の両辺に16をかけて・・・ と仰っているから出た混乱でしょう。 普通は「分母子(ぶんぼし)に16をかけて」と言います。分母子とは「分母と分子」という意味です。両辺に掛けているわけではありません。だからAHに掛けてはダメです。 ちなみに、私の高校の物理の先生は「地下2階は1階に上がる」と言っていました。地下2階というのは「分母の中にある分数」の分母のことで、本問の場合「16」です。1階は分子です。 だから16を塗りつぶして、5の横に「×16」と書けばいいことになります。 もちろん、aとかyといった文字の分数の場合も同様の計算ができます。
その他の回答 (5)
- arrysthmia
- ベストアンサー率38% (442/1154)
> 左辺のAHには16をかけないのですか? 普通は掛けません。 a = b / c のとき、a = (16 b) / (16 c) だからです。 右辺の 16 を約分すれば、元の式に戻ります。 左辺にも 16 を掛けたければ、掛けてもかまいませんが、 その場合、16 a = (16 b) / (16 c) ではなく! 16 a = 16 × (16 b) / (16 c) または 16 a = 16 × b / c です。 そうでなくては、左辺と右辺が = になりません。 あるいは、先に AH = (1 × 5) / { 2 × (√231) / 16 } としてから、 右辺の分子分母に 8 を掛けてもよいでしょう。 しかし、この部分で間違えたのだとすれば、 答えが正解の4倍になったり 1/4 になったりは、しそうにありません。 > AHが4AHになってしまいます。 というのも、貴方の答えが AH = 160/√231 になったのだか、 AH = 10/√231 になったのだか、はっきりしないし… (√231) / 16 と √(231 / 16) を途中で間違えた ということは、ありませんよね? 間違った計算の途中式を補足に書いて、添削を受けるのが、 理解への早道だと思いますよ。
- 砲術長(@houjutucho)
- ベストアンサー率20% (327/1566)
単純に途中式だけ書き出します。 AH=1/2×5/√231/16 =1/2×5÷(√231/16) =1/2×5×(16÷√231) =1÷2×5×16÷√231 =1×5×16÷2÷√231 =80÷2√231 =40÷√231 =40/√231 理解出来ましたか?
- owata-www
- ベストアンサー率33% (645/1954)
質問者の方がどのように計算したかわからないので、どこを間違えたのかわかりませんが 5/(√231/16)=5*16/√231 というのがわかれば普通に計算できるかと思いますが
- remonpakira
- ベストアンサー率36% (780/2153)
えっと。分数計算ですよね... 分数部分に16/16をかけるするとルート231分の80 手前の1/2をかけて、ルート231分の40 この部分の事ですか?
- simaku
- ベストアンサー率31% (12/38)
分数の両辺に16をかけて80/√231 これに1/2をかけて40/√231でよろしいかと思います
補足
回答ありがとうございます。 左辺のAHには16をかけないのですか?