ゴーシュ四辺形
立体幾何の問題がわからないので質問します。
ゴーシュ四辺形ABCDは、添付した図のように対角線BDが分ける2つの三角形ABDとCBDとが、別々の平面上にあるものである。(もしほかの対角線ACを引けば、これと同じように2つの三角形BACとDACとは別々の平面上にある。また2つの対角線AC,BDは同一平面上にない。)という定義があって、
問題は、ゴーシュ四辺形の対辺が2組とも垂直であるときは、対辺の平方の和は相等しい事を証明する。
自分は、対辺の中点を結んで中点連結定理を使えば、各辺に平行な直線で長方形をつくれると考えたのですが、それでは、対辺の長さを比較するには、まわりくどそうですし、わからなかった。解説をよめば、四辺形の2隣辺を2辺とする平行四辺形を作れ。と書いてありました。対辺が垂直だから、解説のとおりに作った平行四辺形は、長方形になることがあり、その場合は隣辺の長さが違うので、証明できないとおもいます。もし解説のとおりに作った平行四辺形が、いつも正方形なら、証明はできると思いました。どなたかなぜ対辺の平方の和は相等しいのかを解説してください。お願いします。
お礼
参考にします ありがとうございます!