ベストアンサー 関数の増減 2008/01/20 14:35 「常にf'(a)>0である区間では、f(x)は単調に増加する」の逆が成り立たないのはどうしてですか?わかりやすく教えてください。 みんなの回答 (2) 専門家の回答 質問者が選んだベストアンサー ベストアンサー pontiac_gp ベストアンサー率51% (22/43) 2008/01/20 14:58 回答No.2 暗黙の前提としてf(x)の微分可能性などはクリアされているものとして言うと、 f'(a) = 0 になる点が存在しても単調増加の可能性があるからです。 典型的なのがf(x) = x^3 におけるx=0 質問者 お礼 2008/01/20 20:11 すばらしくわかりました。ありがとうございます。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 その他の回答 (1) koko_u_ ベストアンサー率18% (459/2509) 2008/01/20 14:53 回答No.1 >逆が成り立たないのはどうしてですか? f(x)に対する前提が足りないから。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 関数 関数f(x)=x^3-3ax^2+3bx-2 が区間 0≦x≦1 で常に増加するとき、点(a,b)の存在する範囲を求めよ。 単調増加になればいいのだな、と考え微分をして f(x)=3x^2-6ax+3b とそこまでやったのですが、進まず… どうかよろしくお願いします。 関数についての質問 よろしくお願いします。 以下の2問についての解答はあっていますか? もし間違えていたら解説していただけませんか? (1) 関数f(x)=1/x^2は定義域を区間[1,2)に制限した時、 単調増加であり、値域は(1/4,1] (2) 関数y=2x-1は1対1であり、逆関数はx=y/2+1/2 この逆関数はxを独立変数、yを従属変数とすればy=x/2+1/2 関数f(x)は閉区間I=(a,b)で単調増加である(-∞<a<b<∞) 関数f(x)は閉区間I=(a,b)で単調増加である(-∞<a<b<∞)、ここで、B:=inf[a<x<b]f(x) (≧-∞)とおく。 B=-∞であれば、lim[x→a+0]f(x)=-∞であることを示してください。 よろしくお願いします。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 増減・・・?? 「f(x)=xの4乗-4・xの3乗+20の増減をしらべよ。」という問題の解説でf '(0)=0だからx<3ならばつねにf '(x)<0 はなりたたないが区間x<3において X(1)<X(2)⇒f(X(1))>f(X(2))がなりたつからf(x)は区間x<3で減少するといえるから・・・・」とあったのですが・・・いみがわかんないんです。教えてください!!!!おねがいします!! 一方向性関数のつくり方 一方向性関数で、かつ単調増加な関数をつくることは可能でしょうか? y=f(x) から 逆関数 f^-1(x) を求めることが難しく、 かつ x < y ならば f(x) < f(y) ということです。 関数f(x)が区間0≦x≦1で単調に増加する条件は0<x<1のとき、f 関数f(x)が区間0≦x≦1で単調に増加する条件は0<x<1のとき、f’(x)≧0であること。 とあるのですが、なぜこのような条件となるのでしょうか? 自分は条件が、0≦x≦1のとき、f’(x)>0かと思ったのですが、考え方が分かりません、、、 どなたか詳しく説明して頂けないでしょうか。よろしくお願いします。 二回連続微分可能な関数 閉区間[a、b]を含むある開区間上で定義された実数値関数f(x)が二回連続微 分可能で、任意の点x∈[a、b]において、f''(x)≧0とする。このとき、次の 問に答えよ。 (1)任意のc∈[a、b]に対して、次の不等式が成立することを証明せよ。 (b-c)f(a)+(c-a)f(b)≧(b-a)f(c) (2)(1)の不等式で、真に不等号>が成立するのはどんな場合か。 (1)について。この不等式は、直線acの傾きより直線cbの傾きの方が大きいとい うことがわかれば導けますね。しかし、わかっている情報は f''(x)≧0である⇔f'(x)が単調増加→点aにおけるf(x)の接線の傾きより、 点bにおける接線の傾きの方が大きい、あるいは同じ、ということです。直線acと 直線cbは接線ではないけれど、このような判断を下せる根拠はどこにありますか ? (2)について。 『f'(x)が狭義単調増加のとき』でいいのでしょうか?それとも、この問題はも っと高度なことを聞いているのでしょうか? この2問の解説をお願いします 1.逆関数の存在と微分可能性が保証されていれば、逆関数の微分係数は合成関数の微分法の公式から求めることができる。 f(x)=x^3+x+1とし、g(u)を g(f(x))=x が常に成り立つ関数とする。この式の左辺と右辺それぞれについて、x=1での微分係数を考えることで、g(u)のu=3での微分係数を求めなさい。 2.直線y=kxがy=e^xに接しているとする。 (直線の傾きk=e、接点のx座標=1) 接点のx座標をαとおく。g(x)=e^x-kxとおく。 (a)区間(-∞、α]でg(x)は狭義の単調減少であることを、区間(-∞、α)でのg(x)の微分係数の符号を調べることでしめしなさい。 (b)区間[α、∞)でg(x)は狭義の単調増加であることを、区間(α、∞)でのg(x)の微分係数の符号を調べることでしめしなさい。 (e^xが(-∞、∞)で狭義の単調増加であることは前提とする) 長文になってしまい申し訳ありませんm(__)m どなたか解説お願いいたします。 微分の関数の値の増減の問題です。 関数f(x)=x^3-3ax^2+3x-4について、次の問いに答えよ。 (1)f(x)の値が常に増加であるように、aの値の範囲を定めよ。 (2)f(x)が極値をもつようにaの値の範囲を定めよ。 という問題で解説に (1)すべてのxについて、f`(x)≧0 f'(x)=3x^2-6ax+3だからf`(x)=0の判別式をDとすると、D=36a^2-36≦0より、-1≦a≦1 と書いてあります。 なぜD=36a^2-36≦0になるのかがどうしても理解できません。 (2)も 極値をもつためにはD>0であればよい とあって、なぜなのか・・・・とない頭と回転させましたがわかりませんでした。どなたか解説をお願いします。 関数の増減について なぜ" x<0でf(x)は減少 "ではなく、" x<=0でf(x)は減少 "になりますか? この写真上の増減表の通り、x=0の時,f(x)を微分したものが0になるため、f(x)は減少も増加もしていないので、x<=0よりも、x<0の方がより正しいと思うのですが、なぜなのでしょうか 連続な凸関数であるための必要十分条件 岩波数学辞典の凸関数の項で、実関数 f(x)がa≦xb≦で連続な凸関数であるための必要十分条件は、適当な単調増加関数p(x)で f(x)=f(a)+∫p(x) と書かれる。(積分区間は、aからxです。) とありますが、その証明を探してもなかなか見つかりませんでした。 分かる方がいれば、よろしくお願いします。 。 中間値の定理の応用 中間値の定理からつぎのことはいえますでしょうか? 「関数f(x)が区間[a,b]で連続で、f(a)≠f(b)、f(x)が単調増加または単調減少ならば、 a<x<bでf(x)=cを満たすcがただ1つ存在する。」 高校数学の範囲でお願いします。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 高校数学「微分」の増減表 「f'(a)=0 となるとき, f(x) が x=a で極値をとるとは限らない」ということなので、 増減表で f'(x) 欄の+, -を書くときに、いちいち全箇所調べる必要があるのですか? 実際、綺麗に +、0、-、0、+ などと並ぶことが多いですよね。 私は、今のところ f'(x)=0 が重解をもつときだけ単調増加/減少になることがあって、その他の場合は綺麗に並ぶ という便宜的な方法をとっているのですが、これには不備がありますか? 増加関数? [問] f(x)=x-sinx は閉区間[0,π/2]で増加関数であることを証明せよ。 1.閉区間[0,π/2]で連続で、開区間(0,π/2)で微分可能でかつf'(x)>0ならば、f(x)は閉区間[0,π/2]で増加関数である。 2.f(x)がある区間で微分可能ならば、f(x)はその区間で連続である。 この2つの定理を利用して、 開区間(0,π/2)で微分可能を求めて、かつ、左端0で右側微分可能、右端閉区間π/2で左側微分可能。 ・・・・・・(ア) よって閉区間[0,π/2]で微分可能となり、連続となる。 次にf'(x)>0を求めて増加関数となる。 このように解いていこうと思うのですが、肝心の最初の(ア)の解き方が分かりません。どのようにすればいいのでしょうか? また、この方針はあっているのでしょうか?よろしくお願いします。 単調増加関数とは何か? よく問題をやっているときに「単調増加関数」とか、「増加関数」なるものが出てきて、それが問題の解法に重要に絡んでいる事があるのですが、一体「単調増加関数」とか、「増加関数」や「減少関数」というのは、どういう意味なのでしょうか? 予想では、関数f(x)の微分値f'(x)が0より大きければ増加関数なのだと思いますが、自信もないしそれだけでは単調増加関数の説明ができません。 f(x)=x^3+ax^2+12x+3が、すべての実数の範囲で単調に増 f(x)=x^3+ax^2+12x+3が、すべての実数の範囲で単調に増加するように、定数aの値の範囲を求めよ。 解答ではf'(x)≧が成り立てばよいとありますが、参考書を見ると、常に単調増加するときはf'(x)>が言えるとあります。≧か>の違いは何なんですか? あと、ことあとf'(x)の判別式をとる際、D≦0とする意味がわかりません。 わかる方いましたら助けてください。お願いします。 中間値の定理とその系について 中間値の定理について (1)中間値の定理は逆について真でしょうか。つまり「関数f(x)が区間[a,b]で連続で、f(a)≠f(b)ならば、f(a)とf(b)の間の任意の値kに対して、f(c)=k、a<c<bを満たすcが少なくとも一つ存在する」の逆は真かどうか (2)中間値の定理の系について、[関数f(x)が区間[a,b]で連続で、f(a)≠f(b)、f(x)が単調増加または単調減少ならば、 f(a)とf(b)の間の任意の値kに対して、f(c)=k、a<c<bを満たすcがただ1つ存在する。」 の逆は言えますか? 高校数学の範囲で詳しい解説をお願いします! y=f(x)が3次関数の合成関数のグラフの書き方 y=f(x)が3次関数の合成関数のグラフの書き方がよくわかりません。 f(x)=x~3-3xのグラフを書いたら、原点を通る原点対称なグラフになり、極大値が2(x=-1)、極小値が-2(x=1)のグラフになりますが、 これを元に、 「y = f(f(x)) = {f(x)}~3 - 3f(x)の グラフの概形を描け」 と言う問題なのですが、 訳分からず、解答解説を見ると、 『y = f(f(x))のグラフを、「x≦-2、 -2≦x≦-1、 -1≦x≦1、 1≦x≦2、 2≦x」 の5つの区間に分けて描くと、 「-2≦x≦-1、 -1≦x≦1、 1≦x≦2」の各区間では、f(x)は「-2から2まで」or「2から-2まで」を単調に変化する。 、「x≦-2、2≦x」の区間では、明らかに単調増加する。 よって、y = f(f(x))のグラフは下図のようになる。』 と説明してあります。グラフはf(x)=x~3-3xのグラフx方向に縮小したようなグラフになっています。 <質問(1)> この説明でグラフを描けと言われても、訳分からず...どうやってy = f(f(x))のグラフが極値を8個持ってて、y=0を満たすxが9個あって…みたいなことがわかるのでしょうか? <質問(2)> y = f(f(f(x)))=0を満たす実数xの数を求めよ。 と言う問題もあって、 「-2から2まで」or「2から-2まで」を単調に変化する部分を「斜面」と呼ぶことにすると、 y=f(x)のグラフは3個の斜面からなり、 y = f(f(x))のグラフは9個の斜面からなる。 そのy = f(f(x))の9個の斜面一つ一つの斜面が、y = f(f(f(x)))のグラフでは3斜面ずつ増える。 よって、9×3=27個。 と解答解説にありますが、斜面の数が×3されていくっぽいのはよくわかりますが、証明とか要らないのでしょうか? 導関数の応用について 関数f(x)=x^3-9x^2+23x-15に対して以下の設問に答えなさい。 (1) 関数が単調増加するxの範囲を求めなさい。x<[ ] 、[ ]<x (2) 関数が単調減少するxの範囲を求めなさい。[ ]<x<[ ] という問題です。 関数の導関数を求めると f'(x)=3x^2-18x+23となり、f'(x)=0の解は、x=3±2√3/3となったのですが、その先が分かりません。教えてください。よろしくお願いします。 関数f(x)= 1/x (x∈(0,∞)) 関数f(x)= 1/x (x∈(0,∞))は単調減少であるから、その逆数は単調増加である。 ○×問題で正解は×なんですが、回答は単調減少ということでしょうか? わかる方、解説お願いします。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
すばらしくわかりました。ありがとうございます。