解1
>>(x+1)/2=(y-2)/3=(z)/1,,, (x-3)/1=(y+4)/2=(z-1)/1
(x+1)/2=s,,,x=(2s-1).......(x-3)/1=t,,,x=(t+3)
(y-2)/3=s,,,,y=(3s+2)......(y+4)/2=t,,,y=(2t-4)
(z)/1=s,,,,,,,,z=(s).............(z-1)/1=t,,,z=(t+1)
2{(2s-1)-(t+3)}+3{(3s+2)-(2t-4)}+1{(s)-(t+1)}=0
1{(2s-1)-(t+3)}+2{(3s+2)-(2t-4)}+1{(s)-(t+1)}=0
2{2s-t-4}+3{3s-2t+6}+1{s-t-1}=0
1{2s-t-4}+2{3s-2t+6}+1{s-t-1}=0
{4s-2t-8}+{9s-6t+18}+{s-t-1}=0
{2s-t-4}+{6s-4t+12}+{s-t-1}=0
14s-9t+9=0
9s-6t+7=0
28s-18t+18=0,,,,,,,,,,126s-81t+81=0
27s-18t+21=0,,,,,,,,,,126s-84t+98=0...3t-17=0
s=3,,,,t=17/3
(d^2)
=[{2s-t-4}^2]+[{3s-2t+6}^2]+[{s-t-1}^2]
=[{2-(17/3)}^2]+[{15-2(17/3)}^2]+[{2-(17/3)}^2]
=[{(6/3)-(17/3)}^2]+[{(45/3)-(34/3)}^2]+[{(6/3)-(17/3)}^2]
=[{-11/3}^2]+[{11/3}^2]+[{-11/3}^2]
=3{(11/3)^2}
d=√3(11/3)
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
解2
>>(x+1)/2=(y-2)/3=(z)/1=s,,, (x-3)/1=(y+4)/2=(z-1)/1=t
(x+1)/2=s,,,x=(2s-1).......(x-3)/1=t,,,x=(t+3)
(y-2)/3=s,,,,y=(3s+2)......(y+4)/2=t,,,y=(2t-4)
(z)/1=s,,,,,,,,z=(s).............(z-1)/1=t,,,z=(t+1)
(d^2)
=[{(2s-1)-(t+3)}^2]+[{(3s+2)-(2t-4)}^2]+[{(s)-(t+1)}^2]
=[{2s-t-4}^2]+[{3s-2t+6}^2]+[{s-t-1}^2]
= [4(s^2)+ (t^2) +16-4st +8t -16s]
+[9(s^2)+4(t^2)+36-12st-24t+36s]
+[ (s^2) +(t^2) + 1 - 2st +2t -2s]
=14(s^2)+6(t^2)+53-18st-14t+18s
=6(t^2)-2(7+9s)t+[14(s^2)+18s+53]
=6[(t^2)-(1/3)(7+9s)t]+[14(s^2)+18s+53]
=6[{t-(1/6)(7+9s)}^2]-[81(s^2)+126+49]/6+[84(s^2)+108s+318]/6
=6[{t-(1/6)(7+9s)}^2]+[3(s^2)-18s]-(49/6)+(318/6)
=6[{t-(1/6)(7+9s)}^2]+[(1/2)(s^2)-3s]+(269/6)
=6[{t-(1/6)(7+9s)}^2]+(1/2)[(s^2)-6s]+(269/6)
=6[{t-(1/6)(7+9s)}^2]+(1/2)[(s-3)^2]-(9/2)+(269/6)
=6[{t-(1/6)(7+9s)}^2]+(1/2)[(s-3)^2]+(-27/6)+(269/6)
=6[{t-(1/6)(7+9s)}^2]+(1/2)[(s-3)^2]+(242/6)
=6[{t-(1/6)(7+9s)}^2]+(1/2)[(s-3)^2]+(121/3)
s=3,,,
{t-(1/6)(34)}=0,,,t=17/3
d=√(121/3)=11/√3=11√3/3