ベストアンサー 全微分? 2007/01/20 02:30 Z=f(x、y)というのは、全微分のことなのでしょうか? みんなの回答 (3) 専門家の回答 質問者が選んだベストアンサー ベストアンサー Mr_Holland ベストアンサー率56% (890/1576) 2007/01/20 20:04 回答No.3 #1/#2です。 補足を拝見しました。 >x=eのu乗cosv y=eのu乗sinv のときZvをZx Zx u v をもちいて表すとどうなるのでしょうか? これを見ると、XとYもuとvの関数になっていることが分かります。手順を掻い摘んで説明します。 (1) ANo.2の全微分の式「dZ=(∂f/∂X) dx+(∂f/∂Y)dy=Zx dx + Zy dy」の考え方を使って、dXとdYをuとvで表してみてください。このとき、∂X/∂u、∂X/∂v、∂Y/∂u、∂Y/∂vは偏微分の記号「∂」を使わずに表されるはずです。 (2) (1)で得られたdXとdYの式の両辺をdvで割り、dX/dvとdY/dvの形にして求めます。このとき、uとvは独立なので、du/dvは0になることに注意してください。 (3) (2)で得られたdX/dvとdY/dvの式を、ANo.2で求めた「Zv=dZ/dv=・・・・・」の式に入れてください。 これで求めるものが得られるはずです。 質問者 お礼 2007/01/20 20:48 とてもわかりやすい説明ありがとうございました。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 その他の回答 (2) Mr_Holland ベストアンサー率56% (890/1576) 2007/01/20 15:32 回答No.2 #1です。 補足を拝見しました。 >X=??? y=?? とすると、ZvをZx Zy ??? ?? を用いて表せというときは、どうするのですか? 「???」部分が書いてないのではっきりしませんが、もし X=g(v), Y=h(v) のことでしたら、全微分は dZ=(∂f/∂X) dx+(∂f/∂Y)dy=Zx dx + Zy dy となります。 あとは、両辺ををdvで割って、 Zv=dZ/dv=・・・・・ としていけば、求められると思いますが。 質問者 補足 2007/01/20 18:44 x=eのu乗cosv y=eのu乗sinv のときZvをZx Zx u v をもちいて表すとどうなるのでしょうか? 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 Mr_Holland ベストアンサー率56% (890/1576) 2007/01/20 06:41 回答No.1 「Z=f(x、y)」はただ式をおいただけでは? これの全微分が欲しいなら、下記のリンクを参照して。 そのまま載っているから。 http://ja.wikipedia.org/wiki/%E5%81%8F%E5%BE%AE%E5%88%86#.E5.85.A8.E5.BE.AE.E5.88.86 質問者 補足 2007/01/20 14:07 X=??? y=?? とすると、ZvをZx Zy ??? ?? を用いて表せというときは、どうするのですか? 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 偏微分 数学の問題なのですが、まったくわかりません。 助けてください。 次の関数の偏微分を求めよ。 f(x,y,z)= (1) 2x + 3x^2y + yz^2 + 4 (2) (2x - x^2y)(4y^3 + yz^2) (3) (cosx + 2xz) sin3y (4) 2z^4e^xy + y(sin2x)e^3x たとえば (1) では ∂f / ∂x = 2 + 6xy + yz^2 ∂f / ∂y = 2x + 3x^2 + z^2 ∂f / ∂z = 2x + 3x^2y + 2yz となるのでしょうか?? いまいち偏微分が理解できません。 できれば教えてください!! 偏微分 微分できる関数f(t)に対して、z=f(x+2y)とおく。このzが∂z/∂x+∂z/∂y+z=0を 満たし、かつf(0)=2となるf(t)を求めなさい。 f(t)に対して、z=f(x+2y)とおくという意味がよくわかりません。 ∂z/∂x+∂z/∂y+z=0を計算すれば f(1)+f(2)+f(x+2y)=0 そこからわかりません・・ よろしくお願いしますm(__)m 偏微分について 至急 偏微分について至急願います。 1つ目ですが、例えばz=3x+1の関数で、yについて偏微分せよ。という問題が出たら、答えは0ですか? 2つ目ですが、f(x,y, z)=y-x-λ(x^2+y^2-2)をλについて偏微分すると、x^2+y^2=2になるのはなぜでしょうか。そもそもλを微分すると何になるのですか?お願いいたします。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム ODE > 全微分 全微分とは何かについて質問したいと思います。 読んでいたweb上の資料では以下の記載がありました。 ----- P(x,y)dx + Q(x,y)dy の微分形式が2変数f(x,y)の全微分になっているとき、すなわち df = ∂f(x,y)/∂x(x,y) dx + ∂f(x,y)/∂y dy = P(x,y)dx + Q(x,y)dy ----- 質問ですが、「全微分でない」というのは、ようするにf()という関数が別の変数(例えばz)に従属していて、fの微分をとった時にzの偏微分も入れないといけない、というようなことでしょうか? 方向微分 ω=f(x、y、z)上の点(x0、y0、z0)における(cosα、cosβ、cosγ)方向への方向微分を求めよ。 (ただしベクトル(cosα、cosβ、cosγ)はx軸、y軸、z軸とのなす角がそれぞれα、β、γであるような単位ベクトル(方向余弦)である) 問題は以上です。 私の解いた回答は ω=f(x、y、z)を一次化するとdω=(∂f/∂x)dx+(∂f/∂y)dy+(∂f/∂z)dz 点(x0、y0、z0)からの方向微分なので dω=∂f/∂x(x0、y0、z0)dx+∂f/∂y(x0、y0、z0)dy+∂f/∂z(x0、y0、z0)dz となる。 よって (cosα、cosβ、cosγ)方向への方向微分= {∂f/∂x(x0、y0、z0)cosα+∂f/∂y(x0、y0、z0)cosβ+∂f/∂z(x0、y0、z0)cosγ}/√cos^2α+cos^2β+cos^2γ なのですがうまくまとまらず、もっときれいな形になるのではないかと思うのですが・・・。 どなたかアドバイスをお願いします。 偏微分についてです dz/(dt)ただし、z=f(x,y) x=cost y=sintと θz/(θu),θz/(θv)ただしz=sin(x-y) x=u^2+v^2 y=2uv の合成関数の微分を使って微分してください 時間がなくてこのような質問になってしまいました すみません 偏微分について f(x)=1/√x^2+y^2+z^2について∂f/∂xの偏微分の解答をお願いします。 偏微分、合成関数の微分法 数学を進めているのですが、偏微分が絡んだ合成関数の微分法がわかりません。 大学数学のテキストは高校のと比べて、読み進めずらいです。助けてください。 (質問本文) 「」は私の理解の仕方と思ってください。まず、公式の理解から私の偏微分の考え方は正しいでしょうか? (1)関数z=f(x、y)にさらにx=x(t)、y=y(t)という関係がある時、「実質1変数で」、dz/dt=(∂z/∂x)×(dx/dt)+(∂z/∂x)×(dx/dt)(「それぞれxとyでzを偏微分して、x、yを今度は1変数なので、微分する」) (2)関数z=f(x、y)にさらにx=x(u,v)、y=y(u,v)という関係がある時,今度は変数が2つuとvがあるので、「どちらか片方で微分して」、∂z/∂u=(∂z/∂x)(∂x/∂u)+(∂z/∂y)(∂z/∂u)(「それぞれ片方の変数x、yでzを微分して(偏微分)さらに、そのx、yを関係式があるuで片方を選んで、uで偏微分する」) 次に、教科書の文章で、f(x、y)=0によって、xの陰関数y=f(x)が定められているとき、y‘=-Fx/Fyをxで微分すると、(dFx/dx)=Fxx+Fyy×dy/dx,dFx/dx=Fyx+Fyy×dy/dx(★)とあるのですが、★の微分はどのように考えて実行しているのでしょうか?(上の教科書の公式では全く上手くいきません) 偏微分の問題です スカラー関数f(x)=1/√x^2+y^2+z^2 について ∂f/∂x、∂f/∂y、∂f/∂z 。の偏微分の解答と解説をお願いします。 偏微分方程式 f(t)は2回微分可能な関数であり、z(x,y)=f(3x-4y)が偏微分方程式zxx+zyy+z=0となるようなf(t)を求めよ。 というような問題で、zxxはzをxで2回偏微分したものを表しています。 手持ちの参考書には偏微分方程式についての記述がなく、どのように考えればよいのかわかりません。 ご回答よろしくお願いします。 偏微分について、 y=f(x) について、 z=g(x、y)=f(x)-yとおいた場合 zは常に、z=0となるとおもうのですが この場合の、 g_y(x,y)=-1について これは、 偏微分の定義 g_y(x,y)=lim(h→0){g(x,y+h)-g(x,y)}/h から y軸方向に少し動いたときのzの変化の割合 と解釈してますが、 z=g(x、y)=f(x)-yのとき zは常に0なのに どうして傾き-1と出るのでしょうか? 偏微分と極座標 偏微分と極座標 (∂^2) f (x,y)/∂x^2 + (∂^2) f (x,y)/∂y^2 から 極座標表示 x=rcosθ,y=rsinθ を用いて [ ∂^2/∂r^2 +(1/r)(∂/∂r) + (1/r^2)(∂^2/∂θ^2) ] f (r,θ) を導くという課題なのですが、見当がつかず困っています。 どなたかご教授頂けないでしょうか?よろしくお願いします。 ∂z/∂u = (∂z/∂x)(∂x/∂u) + (∂z/∂y)(∂y/∂u) ∂z/∂v = (∂z/∂x)(∂x/∂v) + (∂z/∂y)(∂y/∂v) を用いるのでしょうか? 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 偏微分の問題です 偏微分の問題です z=f(x,y) x=rcosθ y=rsinθ について、Z[x]とZ[xx] (zのxについての、1階偏微分と2階偏微分) をr,θ,Z[r],Z[θ]を用いて表したいのですが、後者のほうがわからなくて困っています。 前者は自分で計算したところ Zのxでの1階偏微分 Z[x] = Z[r] cosθ - 1/z * Z[θ] sin(θ) となりました。これもあっているか不安です。どなたか教えていただけると嬉しいです。 偏微分 助けて! 次の関数の偏微分を求めよ。 f(x,y,z)= (1) 2x 3x^2y yz^2 4 (2) (2x-x^2y)(4y^3 yz^2) (3) (cosx 2xz)sin3y (4) 2z^4e^xy y(sin2x)e^3x 編微分について教えてください>< 以下の問題がわかりません。解き方を教えてください>< 問.次の関数の2階までの偏導関数をすべて求めよ。 (1)f(x,y,z)=cos(x^2+y^2+z^2) この問題の式はf(x),f(y),f(z)の2階微分のほかには何を求めるべきなんですか? よろしくお願いします。 微分について 微分について x^2+y^2=a (aは定数)をxで微分すると、2x+2y*y'=0となりますよね? いま、f(x+y)=f(x)*(y)-(sinx)(siny)をyで微分したいのですが、良く分からず先ほど質問をしたところf(x)をyで微分すると0になると教えていただいました。 答えを見てもそのようになっているみたいなのですが、いまいち納得いきません 自分としてはf'(x+y)=f'(x)*f(y)+f'(y)*f(x)-(sinx)'(siny)-(cosy)(sinx)としたいのですが。 y^2をx微分した時は0にならないのに、どうしてここではf(x)をy微分すると0になるのでしょうか。 複雑な偏微分 z=f(x, y)=√[5+4{3(logx)+8(logy)}] のとき、 ∂z/∂x(zをxで偏微分)は、どういう風に計算するのでしょうか? 偏微分の問題?? z=f(x,y),x=aCOSt ,y=bSINtの時、zをtの関数とみて、z'(0)を求めよ。という問題があるのですが、これってzがx=aCOSt ,y=bSINtで表されるfという関数で、zを微分してtが0の時どうなるんだっていう事ですよね? 解いてはみたんですが、z'(0)=f'(0,b)でいいのでしょうか。何か物足りないような気がするんですが、分かる方よろしくお願いいたします。 偏微分について 偏微分についてどうしても理解できないので、質問させて頂きます。 z = 2y y = 2x の時、∂z/∂xは0だと思うのですが、 z = 4x としてからxでの偏微分を考えてはいけないのは何故なのでしょうか? ずっと疑問に思っているので、よろしくお願いしますm(_ _)m 偏微分の計算について 偏微分について学んでいます。 微分したい文字以外は係数とおいて計算するまではわかりました。 しかし以下のような偏微分の計算の仕方について困ってます。 「z=x^2+y^2+2xyの2変数関数についてx,yのそれぞれで偏微分せよ。」という問題で、 ∂z/∂x=2x+2y、∂z/∂y=2y+2x ∂^2 z/∂x^2=2、∂^2 z/∂y^2=2 という計算まではできるのですが、 「∂^2 z/∂x∂y=2」「∂^2 z/∂y∂x=2」となる意味がよくわかりません。 ∂^2 z/∂x∂y=2、∂^2 z/∂y∂x=2という答えを導くには 上の4つの ∂z/∂x=2x+2y、∂z/∂y=2y+2x ∂^2 z/∂x^2=2、∂^2 z/∂y^2=2 のどれを使って、どう計算すればいいのでしょうか? よろしくお願いします。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
とてもわかりやすい説明ありがとうございました。