∂/∂t(演算子)をjω(こちらは数)に置き換えて解析することは電磁気学だけでなく、振動論一般で用いられる方法です。ただし何でもかんでも無条件に∂/∂tをjωとおいてよいわけでなく、時間に関し振動する定常解を仮定した場合にのみ置き換えることができます(*)。減衰振動(exp[(-a+jω)t])や単なる一次応答(exp(-at))の時はこの置き換えはできません(aは正の定数)。
いま着目している振動f(x, y, z, t)が場所の関数R(x, y, z)と時間の関数T(t)の積で表せるとします。
f(x, y, z, t)=R(x, y, z)×T(t)
T(t)は時間に関し振動する定常解との前提でしたから、例えばT(t)=Aexp(jωt)と表すことができます(Aは定数)。するとfを時間tで偏微分する演算は
∂f/∂t=R(x, y, z)×∂T/∂t
=R(x, y, z)×∂[Aexp(jωt)]/∂t
=R(x, y, z)×jωAexp(jωt)
=R(x, y, z)×jωT(t)
となりますから、∂/∂tという演算をjωを掛ける操作に置き換えてよいわけです(chukanshiさんが既にお答えの通りです)。減衰振動や一次応答の場合に∂/∂t→jωの置き換えができないのも自明ですね。
--------
*過渡現象の解析では∂/∂t→jωの置き換えはできないのですが、∂/∂tをjωでなくs(ある変数)などとおいて代数的に微分方程式を解く方法(ラプラス変換など)もあります。この場合は解の形は振動するものに限定されず、また過渡現象も扱うことができます。機会があればこの先で学ぶでしょう。
お礼
詳しい説明ありがとうございました。