締切済み ペアノの定理について教えてください。 2006/06/26 16:23 ペアノの定理の定義自体ははなんとなくわかるのですが、自然数全体を公理化したとは、具体的にはどういうことでしょか?お願いします。 みんなの回答 (1) 専門家の回答 みんなの回答 hanako171 ベストアンサー率31% (31/98) 2006/06/27 15:42 回答No.1 国語の問題でしょうか? 「自然数全体を公理化した」とは「自然数を定義した」ということではないでしょうか。 ---------------------- ペアノの公理系 1 0∈N 2 n∈N ならば、 S(n)∈N 3 n∈N ならば、 S(n)≠0 4 0∈E かつ n∈E から常に S(n)∈E ならば、 N⊂E 5 m,n∈N ならば、 S(m)=S(n) から m=n 以上を満たす集合Nの元を自然数という。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 有理数もペアノの公理を満たす? ペアノの公理を満たすものを自然数と言うそうですが、 私は可算無限集合ならペアノの公理を満たすと思います。 そうすると、有理数も可算無限集合なので、 有理数は自然数となってしまいます。 有理数は自然数でないので、 ペアノの公理を満たさない筈ですが、 ペアノの公理を満たさないと何故言えるのか分かりません。 何方か教えていただけないでしょうか? 私の言っているペアノの公理は、 集合N,N の元e,写像φ : N → N が、 (1) φ は単射である (2) φ(N) ⊂ N\{e} (3) M ⊂ N ∧ e ∈ M ∧ φ(M) ⊂ M ⇒ M = N です。 (1)と(2)を満たす写像φを定義でき、 ∃e ∈ N;φ(N) = N\{e}である。 と解釈しています。 ペアノの公理の5番目の公理(いわゆる数学的帰納法) ペアノの公理の5番目の公理(いわゆる数学的帰納法の原理)について、 なぜこれが自然数の定義に必要なのか気になって、考えたり調べたりしています。 (つまり、1~4の公理だけでは何が不十分なのかについてです) そんな中、自然数の加法を定義するときに公理5が必要であるということを聞きました。自然数の加法を定義するときに公理5が必要な理由について、 ご教示、またはアドバイスいただけないでしょうか。 もうすこし具体的には、 N=(N,S,0) S:successorの写像 において、以下のように加法(二項演算a)を定義するとき (i) a(x,0) = x (ii) a(x,S(y)) = S(a(x,y)) この(ii)の定義の際に必要だと思いますが、 どのように第五公理が効いているのかが理解できていません。 なぜ小数は自然数ではないのでしょうか? なぜ小数は自然数ではないのでしょうか?自然数はペアノの公理で定義されていると聞きました。 そして、ペアノの公理を見る限りでは小数が自然数に含まれてはならない根拠がないように思えました。なぜ小数は自然数とはいえないのでしょうか? 自然数aの後続数をa'とすると、a'=a+1とでも定義されているのでしょうか? (でもペアノの公理では任意の自然数aの後続数a'が存在するとしかいってないような・・・) 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム ペアノ公理ってなに? ペアノ公理を今日大学で習ったんですが、 左辺に二乗がないのにいきなり二乗が出てきてまったく理解できませんでした。ペアノ公理わかりやすく説明してくださる方いらしゃったら教えてください。基本から教えていただけるとありがたいです。 ペアノの公理を使った1+1=2の証明について ペアノの公理というものを使い、1+1=2の証明が出来ることを知り、 調べてみました。 wikipediaによると、 (1)自然数 0 が存在する。 (2)任意の自然数 a にはその後者 (successor)、suc(a) が存在する(suc(a) は a + 1 の "意味")。 (3)0 はいかなる自然数の後者でもない(0 より前の自然数は存在しない)。 (4)異なる自然数は異なる後者を持つ:a ≠ b のとき suc(a) ≠ suc(b) となる。 (5)0 がある性質を満たし、a がある性質を満たせばその後者 suc(a) もその性質を満たすとき、すべての自然数はその性質を満たす。 だそうでうが、 私自身、未熟だからというのも大きな理由であるとは思いますが、 納得できないでいます。 疑問点は ・ここから加法がどのように定義され、なぜ、これが1+1=2の証明になるのか ・(5)の意味と必要性 です(・_・;) 詳しい方、解説していただけるとありがたいです。 よろしくお願いします_(._.)_ ゲーデルの定理 完全性定理では「任意のモデルで真である文はすべて1階述語論理で証明可能である」 不完全性定理では「自然数論を含む体系は無矛盾である限り、真であっても証明できない 命題が存在する」とありました。 それではこの2つの定理をペアノの公理系に当てはめると「全ての真である命題は証明可能」でありながらどこかに「真であっても証明できない命題が存在する」わけですか? 何だか矛盾するような感じがしますが、そんな訳ありませんよね。 どう考えたらよいのか教えてください。 よろしくお願いいたします。 そもそも、ピタゴラスの定理って定理なのでしょうか? そもそも、ピタゴラスの定理って定理なのでしょうか? いいかえると、真実なのでしょうか? これは、実は簡単にわかります。証明できません。 なぜなら、非ユークリッド幾何学という反例があるから。 だから、ピタゴラスの定理っていうのは、定理ではなくて、 普通のユークリッド幾何学を展開していく上での、仮定とか前提と考えたほうがいいと思います。 ではなぜ、世の中にたくさんある「ピタゴラスの定理の証明」なるものはなんなのでしょうか? それは、ユークリッド幾何学を特徴づけるピタゴラスの定理よりも、 よりも基本的な公理を仮定していなければなりません。 一般的には、第五公準(平行線は唯一唯一つ)ってのがそうだと思われます。 しかし、その前に、点とか直線とか、距離とか、角度とか、合同とか、たくさんの概念が定義されなくてははなりません。 ところで、数学基礎論では、まず、集合とその間の演算を公理的に定義し、また、自然数と和や積を定義します。 それによって、数論の基本的な結合法則、可換法則、分配法則といったものも、「証明できる」ものになります。 1+1=2というのも「証明できる」ものになります。 同じようにしていけば、ピタゴラスの定理って基礎論的に、公理的に、「証明できる」定理なのでしょうか? 実は、「幾何学基礎論」という本を軽く読んだり、いろいろ検索してみたのですが、ピタゴラスの定理は載ってませんでした。 もしかして、ピタゴラスの定理っていうのは、基礎論的にも、公理的にも、「証明されていない」ものなのでしょうか? ちなみに、sinθ, cosθを、無限級数の和として定義してやって、 それによってユークリッド幾何の回転を定義し、sin^2θ+cos^2θ=1となるので「証明できた」というのは、たぶん、万人は認めないと思います。 私が知りたいのは ゲーデルの不完全性定理の幾何学での理解です。 私が知りたいのは ゲーデルの不完全性定理の幾何学での理解です。 (1)第2不完全性定理では 次の表現があり『公理系Nにおいて、その無矛盾性を証明することは不可能である』、そのなかで問題として『 真であるが証明不可能な主張とは何か。』に対して 答え『公理』とあり 自己言及を表現していることは 理解し易いのです。幾何学では5公理です。この理解はたぶん正しいと思います。 ところが (2)私がよく分らないのは 第1不完全性定理です。『形式的体系Sにおいて、形式的体系Sが無矛盾である限り、「形式的体系Sにおいて命題は証明可能である。」という命題も「形式的体系Sにおいて命題は証明不可能である。」という命題も証明不可能である。』 と表される(別表現もありますが)とあります。 ここで現れる命題は抽象的言語であってよく分らないのです。例えばユークリッド幾何学においてはこの具体例は何でしょうか。私の理解は 「例えば無限遠点において平行線は交わるは証明可能である」はその例のようにおむのですが。つまり 例題には ユークリッド幾何学では未定義の無限遠点が現れており 証明はできない のです。いくら公理を増やして定義を明白にしても 未定義の領域はある ということです。 もう一つの例ですが 無限遠点は扱わないという6番目の公理を追加したとしても 例えば 「X・X=-1 は根がない は証明可能である」も証明できない と思うのです。なぜなら複素数は未定義だからです。つまり 『公理で定義されても未定義域は必ずある』が第一不完全性定理の一つの別表現ではないか と思うのです。この理解が間違っているのかどうか どなたかにお教えて頂きたかったのですが 公理なのか定理なのか分かりません 公理と定理の言葉の意味は知っています 質問 中学校の数学の教科書に出てくる等式の性質は、公理ですか? 質問の補足 : 一応先に調べたのですが、 下のURLで書いてある内容では、公理から導き出される定理と書いてありますが、内容の信憑性が証拠がない以上未知数なので、できれば1の質問に答えるにあたって、何かしらの証拠があると助かります あとは、定理だったとして、その定理に使われている公理の名前は何ですか? (https://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q11199841376) ユークリッド幾何学にまつわる不完全性定理的理解について ユークリッド幾何学にまつわる不完全性定理的理解について ゲーデルの不完全性定理の対象となる数学は『公理系Nが無矛盾である』が前提です。ユークリッド幾何学は 一階述語論理で表されることが出来る自然数の部分集合であって、ゲーデルの不完全性定理の対象である 公理Nの無矛盾である 論理の対象になってないとなり それ以上のユークリッド幾何学の論理的理解が進みません。そこでゲーデル理解を拡張して『公理系Nが無矛盾ではない』として不完全性定理を理解すると(須田隆良氏、中西章氏など) (1)ゲーデルの第一不完全性定理の解釈==>公理系Nが無矛盾であろうがなかろうが 公理系Nにおいて、「公理系Nにおいて命題は証明可能である。」という命題も、「公理系Nにおいて命題は証明不可能である。」という命題も証明不可能である (2)第2不完全性定理の解釈==>公理系Nが無矛盾であろうがなかろうが その無矛盾性を証明できない となります。これらはゲーデル不完全性対象から外れておりますが、対象外のユークリッド幾何学を理解するには都合がよい と思うのです。 (2)によりユークリッド幾何学の公理の無矛盾性は証明できない。 (1)によりユークリッド幾何学の未定義領域(非ユークリッド幾何学、虚数、無限遠点とか)は 公理系Nにふくまれ 多くの証明できない命題があることになります。もちろん 公理定義内では完全性理論は保証されています。 なぜ このようなユークリッド幾何学に こだわる かと申しますと 世の中の 論理(数学、哲学、論理を用いた論文 など)は ユークリッド幾何学的なものが 圧倒的に多いと思うのです。これら論文は ほとんどは一階述語理論で表され かつ ゲーデル不完全性定理 対象論理ではないのです。それら論文の特に(2)に関わる自己証明は出来ない ということは重要であると思うのです。もちろん 自己証明が出来ないと言って間違いとはなりません が 常に 冷静に謙虚に 主張理論の原点を見直すことに 繋がっていると思うのです。勿論、論理構成が出来ていないシロモノは 論外であります。 以上のように理解しているのですが、ユークリッド幾何学にまつわるゲーデル不完全性定理の場外理解は問題ないでしょうか。諸先生のコメント頂けましたら幸甚です。 自然数の構成 あるサイトで自然数の勉強をしてると、つぎのようなことが書かれてました。 自然数とは、ペアノ公理をみたす集合の元である。 集合Nがペアノ公理を満たすとは、つぎを満たすことである。 Nは、0を含み、単射f:N→Nが存在して、 (1)f(N)は0を含まない (2) )Nの任意の部分集合をSとする。 0∈S、f(S)⊂S⇒S=N. と書いてあったのですが、このような集合Nは、存在することを証明できるのでしょうか? 仮に、自然数Nとしてf(n)=n+1とすればペアノ公理を満たすけど、これだと循環論法の気がします。 定義・定理・公理・証明について 定義、定理、公理、証明について詳しく調べるのが夏休みの宿題なんですが・・・。 普通に調べてもなんだかよく分かりません; 別々でもいいんで中学生にも分かりやすく、かつ詳しく教えてください!! 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム ペアノ曲線はフラクタルか? 「フラクタル」 石村貞夫・園子 著を読み,フラクタルの勉強をしていて,ペアノ曲線に至りました. 連続な曲線でありながら,平面(正方形)を充填することが出来る.はたしてペアノ曲線は何次元なのか? そこから厳密な次元の定義に移るのですが,ペアノ曲線の位相次元(dimT(K))が「2」になることは分かったのですが,ハウスドルフ次元(dimH(K))がいくつになるのかが分かりません. ペアノ曲線はフラクタルなのですが? 識者の方,お教えください. ヒルベルトの点・直線・平面の「定義の仕方」について 『高校数学+α:基礎と論理の物語』(著: 宮腰忠)という書籍がPDFファイルになったもの↓ 第1章 数 http://www.h6.dion.ne.jp/~hsbook_a/ch_1.pdf を読んでいるのですが、27~28ページに、 19世紀末期,ドイツの数学者ヒルベルト(DavidHilbert,1862~1943)は,著書『幾何学基礎論』において,点・直線・平面が関係するある公理系を提唱しました.彼は,点・直線・平面といった基本的対象,および,‘存在する’,‘の間に’,‘と合同’といった基本的関係を「基本概念」と考えて,それらに直接的な定義を与えず,基本概念は,その公理系の中で,それらが満たすべき条件によって間接的に定義されていると見なしました.つまり,点・直線・平面は,公理系に述べられている,それらの間の相互関係によって定義され,また‘存在する’,‘の間に’,‘と合同’などの基本的関係も定義されるというわけです.このようなことはペアノの公理系が自然数を定義するだけでなく,未定義な‘次の者’n′から‘1を加える’演算が自然に定義されたことに対比できるでしょう. 彼が友人の数学者と酒場でビールを飲みながら,“点・直線・平面という代わりに,テーブル・椅子・ビールジョッキと言うことができる”といったことは有名です:公理系の中で,点・直線・平面の用語を,例えば,T・C・Hと置き換えたとしましょう.まず,T・C・Hは公理系の中で,それぞれ,点・直線・平面が満たすべき基本的性質を当然ながら満たします.次に,T・C・Hに課せられた公理系の条件によって,理論は公理系のみから完全に演繹的に展開され,T・C・Hに課せられた一連の定理が得られます.それらの定理は点・直線・平面が満たすべき定理に一致します.したがって,T・C・Hは,それぞれ,点・直線・平面と同一視せざるを得ないことになります.このことを指して,点・直線・平面は間接的に定義されているというわけです.このような定義の方法はまさに究極の定義といえるでしょう.点・直線・平面などの基本概念は,直接的定義を必要としない「無定義用語」になりました. という文章があるのですが、どういう事なのでしょうか? 「間接的に定義する」というのは、27ページ下部に載っているような公理群を考え、それを満たすようなものとして点・直線・平面を定義する訳ですよね? でも点・直線・平面を、T・C・Hと置き換える必要性が良く分かりません。 「『点・直線・平面を間接的に定義する公理群』から導かれる定理」と「『T・C・Hを間接的に定義する公理群』から導かれる定理」が一致するという事ですか? 仮にそうだとしてもただの言い替えな気がしますし…。 22ページには「かなりレベルが高い内容なので,‘お話’と考えて‘フーン,そういうことか’程度の理解で十分でしょう.」とも書かれていますし、高校数学レベルでは理解するのは無茶ですかね? 回答宜しくお願いします。 自然数が等間隔に並ぶことを証明できるでしょうか? 1.ペアノの公理で数字が0を最初にして順番に並んでることが定義できて 2.加法を定義してsuc(a)がa+1ということにしたけれども。 1.任意の自然数 a にはその後者 (successor)、suc(a) が存在する=順番がある のはわかった 2.けれども並んだ自然数それぞれの間隔がみんなおんなじだって 加法で定義できるのでしょうか? 1.ジャガイモが3個あったとして(任意の自然数 a にはその後者 (successor)、suc(a) が存在する) 2.3個のジャガイモは区別できてそれぞれ重さが違う(等間隔じゃない) とおもうんです。 1を足すと次の自然数と決めちゃうと 数直線上の自然数も等間隔だし図形もかけるから便利なんです。 1と2の間の長さと2と3の間っておんなじなんでしょうか? そういうふうに単位が1と決めたのでそうなんです。 でも、大きなジャガイモ(大きな1)や小さなジャガイモ(小さな1)があるような気がするんです。 対数グラフと普通のグラフの対応がヒントになりそうなんですが。 不完全性定理 ユークリッド幾何学 公理 専門家の方にお聞きしたいのですが、不完全性定理でいう「自然数論を含む帰納的に記述できる公理系が、ω無矛盾であれば、証明も反証もできない命題が存在する。」において、 ユークリッド幾何学における証明も反証もできない命題=ユークリッド幾何学の5つの公理 ということでよろしいでしょうか?? また、ユークリッド幾何学の5つの公理以外には、ユークリッド幾何学において証明も反証もできない命題は存在しないと考えていましたが、正しいでしょうか? 推論規則と定理、公理は違うもの? 推論規則というものがイマイチ何なのかよく分かりません。 公理や定理などとは違うものなのでしょうか? これまで本など読んだところの印象だと、定理でも公理でもよくて A → B の様な形になっていればいいのかなぁと、勝手に思っています。 (↑が正しい場合、もちろん A ⇔ B でもいいと思っています) ただ僕が思っている事が正しい場合、何でわざわざそんな言葉を使いたくなるのかが、やはり分かりません。 公理や定理という言葉を使っていれば十分ではないかと思うのです。 それは単に僕が不勉強なので、その言葉が便利だと思う状況を知らないだけなのかもしれませんが、そういう状況をご存知であれば教えて下さい。 なにかキーワードの様なものでも結構です。 よろしくお願いします 私がよく分らないのは ゲーデルの第1不完全性定理です。『形式的体系Sに 私がよく分らないのは ゲーデルの第1不完全性定理です。『形式的体系Sにおいて、形式的体系Sが無矛盾である限り、「形式的体系Sにおいて命題は証明可能である。」という命題も「形式的体系Sにおいて命題は証明不可能である。」という命題も証明不可能である。』 と表される(別表現もありますが)とあります。 ここで現れる命題は抽象的言語であってよく分らないのです。例えばユークリッド幾何学においてはこの具体例は何でしょうか。私の理解は 『例えば無限遠点において平行線は交わるは証明可能である』はその例のように思うのですが 間違っているでしょうか。 問題は 無限遠点が公理を用いて表されるか どうか という先輩のご指摘があり公理をあらためてみてみますと 公理2に線分を限りなく伸ばすことができる とあります。つまり無限遠点は「公理2の限りなく線分を伸ばした点」と理解され 公理の定義を用いることで表されるとおもうのです。間違っているでしょうか。参考までに公理を挙げておきます。 <ユークリッド 幾何学の公理> (公理1)与えられた2点に対して、それらを結ぶ線分をちょうど1つ引くことができる。 (公理2)与えられた線分は、どちらの側にも限りなく伸ばすことができる。 (公理3)平面上に2点が与えられたとき、一方を中心とし、他方を通る円をちょうど1つ書くことができる。 (公理4)直角はすべて相等しい。 (公理5(平行線公理))直線外の1点を通り、その直線に平行な直線は1本に限る 自然数の或る元aの前の元前の元と辿ると、始まりの元に至るとの証明が判り 自然数の或る元aの前の元前の元と辿ると、始まりの元に至るとの証明が判りません。始まりの元はひとつのみ、は判っています。1,2,3等を使わずにペアノの公理で教えてもらえたら、と思います。私としては、もしaが別の系統であれば、aの傍を通り抜けて無限に遡ることを否定できないのではとおもっています。 (-)×(-)=(+) は定理ですか?定義ですか? いつもお世話になっています。 (-)×(-)=(+) は定理ですか?定義ですか? 上記の用に計算しないと現象がうまく説明できません。これって定理ですか?中一で初めて上記を習った時「数の性質」とか記述されていたように思います? 定義だとすれば最初に定義した人は大変先見の明があるなと思います。 理学部数学科の方宜しくお願いします。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など