余弦定理を用いた問題
こんばんは。いつもお世話になっております。
問題集を解いていてどうしてもわからない問題があるので、解き方・考え方を教えてください。
問題1) 四角形ABCDが、半径64/8の円に内接している。この四角形の周の長さが44で、辺BC=辺CD=13であるとき、残りの2辺ABとDAの長さを求めよ。
自分なりに考えてみたのですが、ABとDAに関する方程式を2つ立てて連立させるのかと思ったのですが、AB+DA=18しか思いつきません。半径64/8の円に内接していることから、正弦定理を使おうと思っても角の大きさが一つも分かっていないため使うことができません。。
問題2)四角形ABCD(問題1とは別)において、BC=2,CD=3,∠DAB=60度(π/3),∠ABC=∠CDA=90度(π/2)とする。このとき、辺AB,辺DAの長さを求めよ。
この問題は、対角線ACを引き、2つできる直角三角形について三平方の定理でAC^2=の形にして、2つを連立させて整理すると、AD^2=AB^2+1という式が出てくるのですが、この式を解くにはもうひとつ式が必要です。どうやって出せばいいのでしょうか?
両方ともおそらく余弦定理や正弦定理を使うのかと思うのですが、どちらも適用できません。。もう2時間近く粘っていますがいっこうに解けません。どうかお力をお貸しください。よろしくお願いいたします。
お礼
三角形の面積を使うのがポイントなんですね。 これですっきり眠れます。ありがとうございました。