- ベストアンサー
記憶項を伴う波動方程式とは ?
両端を固定した弦の微小振動を表す波動方程式 u_tt(t,x) = c^2u_xx(t,x) (c は波の伝播速度) に記憶効果を考慮すると右辺に\int_0^t a(t-s)u_xx(s,x)dsのような積分項が加わるらしいのですが, そもそも, 弦の振動の記憶効果とはどのような物理現象なのでしょうか? (過去の影響を表すようだが...) またそれを数式で表現したものが積分項になる理由を教えてください. このようなことが書かれている文献(和・洋を問わず) でも構いません.
- みんなの回答 (4)
- 専門家の回答
お礼
ご回答ありがとうございました (返事が遅くなり申し訳ありませんでした). おかげさまで, おおよそのことはわかりました. お答えに便乗してもう少し質問させて下さい. 回答にある記憶関数 M(t) としては具体的にどのような関数を考えるのが自然なのでしょうか ? たとえば, t=0 で M(t) がsingular (M(0)=\infty になる) だが t \to \infty で 0 に減衰する関数と, t=0 も込めて微分可能な関数では, 物理現象としてはどのような違いがでてくるのでしょうか ? それから, ご指摘の非平衡や不可逆の物理の教科書をいくつか調べてみましたが, 「記憶効果」とはっきりと書かれた教科書を見出すことができませんでした. 具体的に文献を教えていただければ幸いです.