ベストアンサー 放物面鏡について 2001/12/05 22:23 放物面鏡の放物線はどんなものでも放物線ならいいのでしょうか?何か一定の規則があるのでしょうか?教えてください。お願いします。 みんなの回答 (3) 専門家の回答 質問者が選んだベストアンサー ベストアンサー starflora ベストアンサー率61% (647/1050) 2001/12/06 14:24 回答No.3 何に使う放物面鏡のことを考えていられるのかで話が幾分違ってくると思います。おそらく、天体望遠鏡の主鏡(対物鏡)として使う放物面鏡のことを言っておられるのだと思います。 放物面鏡に使う「放物面」は、No.1 No.2 の方が言われていますように、放物線の回転で得られる面で、どんな放物線でも構わないと思えますが、天体望遠鏡に使う場合は、制限がやはり出てきます。天体望遠鏡は、屈折式と反射式がありますが、反射式は「色収差」がでません。色がスペクトル分光し、星などを見ると、屈折式だと色が付いて見えるのが「色収差」です。 反射式だと、この色収差がないのです。では何故球面ではなく、放物面鏡を使うかというと、No.1 の方が言われているように、これだと、反射面の軸に平行に入って来た光が、綺麗に一つの焦点に集まり、球面の場合起こる、焦点のずれ(球面収差)がないからです。 しかし、先の方々も言っていますが、放物面の「開き具合」というものがあります。放物線をそのまま回転させて放物面を造ると、何か底の丸い、深い円筒のようなものができますが、このようなものだと、望遠鏡の反射鏡として問題が出てきます。それは、平行に入って来る光以外に、斜めに入って来る光に対し、放物面鏡でも、「コマ収差」が起こるからです(コマ収差については、以下のURLのリンク先に簡単な説明が出てきます。少し分かりにくいですが)。 「コマ収差」がきついと、望遠鏡で見た時、視野周辺の星などの焦点が少しぼけて来ます。z=a(x^2+y^2) の係数aが開き具合ですが、aが大きいと、鏡面の直径に比して、開き具合が小さくなり、コマ収差が大きくなります。その意味で、鏡面の直径を決めると、コマ収差が許容限界に収まるように、十分、面が開くよう、小さなaの放物線(面)を選ばねばならないことになります。 天体望遠鏡の場合だと考えると、実用的に、収差の小さなものにしようとすると、「一定の規則」というほどのものではありませんが、コマ収差を小さくするように、鏡面直径が決まっていれば、それに応じて、適切にaを小さくするという、実用的な制限があるでしょう。 参考URL: http://www.gunma-inpaku.com/museum/dic/00p/parab02-j.html 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 その他の回答 (2) nozomi500 ベストアンサー率15% (594/3954) 2001/12/06 10:58 回答No.2 「どんなものでも・・・」って、放物線は二次曲線で、みんな同じです。「一定の規則」って、二次曲線でしょう。 いわゆるy=ax^2+bx+cのグラフで、目盛りの大きさ次第で、「開き方」は違って見えますが、「形」はみな同じ(拡大縮小コピーすればすべて重なる)。このまま回転させれば放物面になるはず。 どの部分まで使うか、という違いになるでしょう。ほとんど平たい部分か、かなり「立った」へんまでか。 ニュートン式望遠鏡の反射鏡は、それぞれ倍率によって、「開き加減」がちがいます。(というより、口径と焦点距離を設定してある、というべきでしょうか) 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 siegmund ベストアンサー率64% (701/1090) 2001/12/05 23:35 回答No.1 放物面鏡(回転放物面ですね)の特徴は, 軸に平行な光を入射させると放物面の焦点に光が集まる(まさに焦点ですね), あるいは, 焦点に光源を置くと反射光は光軸に平行に出てゆく, です. 放物面の開き具合との関連をお尋ねでしたら, 上の性質は開き具合には関係ありません. ただし,開き具合によって不物面の放物面の焦点の位置は異なります. z 軸を軸とし,原点を頂点とする回転放物面は z = a(x^2 + y^2) で あらわされますが,a が開き具合を決めます. 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育その他(学問・教育) 関連するQ&A 軸外し放物面鏡について 今、友達が実験で軸外し放物面鏡(90度)を使用しています。 平行光の入射方向と点光源からの入射方向は どちらからでもよいのでしょうか? 私としては、原理的に どちらでもよいことはないと思っているのですが、 友達は、対称性があるからいいはずと言っています。 光軸調整が難しいため、あまり言うことができていませんが、 もし違っているなら、彼の卒論のためにも言ってあげるべきだと思うのですが、 実際のところどうなのでしょうか? いうべきか、言わざるべきかではなく、 放物面鏡についての質問に答えていただきたいです。 よろしくお願いいたします。 放物面鏡で平行光線を作りたい ある光源から出た光を,軸外し放物面鏡で平行光線に変換し,その平行光線を再び軸外し放物面鏡で収束光線に戻すような,光軸系を作ろうと考えています. ここで簡単のため,軸外しは無視して,普通の放物面鏡を考えます. 理論上,放物線の焦点位置に点光源を設置すれば,そこから放射される光は完全な平行光線になります.しかし実際には ・完全な点光源が存在しない ・光源を完全に焦点位置に設置できない という理由で,完全な平行光線を作り出すことができません.完全な平行光線を作り出せなければ,放物面鏡の特性上,再び収束光線に戻すときに収差が生じます. できる限り収差を小さくするために,できる限り完全な平行光線を作り出したいと思います.そのために光の平行度を評価したいのですが,どのように確認,評価すれば良いでしょうか? 使用するのはミラーですので,実際には赤外光を使うのですが,確認,評価に使用する波長は可視光でも構わないと考えています. お知恵をお貸し下さい.よろしくお願いします. 放物面鏡 平行光線 放物面鏡では平行光線が1点に集まることを証明せよって問題があり。 それがテストに出題されるのですが。 証明のやり方で 放物線を考えて、準線と焦点からの距離が等しくて 入射角と反射角が等しいため焦点に光が集まるって感じで 証明しようと思うのですがなんか不十分な感じで自分では回答に 自信がありません。ネットでしらべてみたのですが放物線の性質を 使った証明みたいな感じだったのですが他に物理的な証明方法は ありますか?どなたか回答おねがいします 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 楕円放物面の方程式 <目的> 数千のxyz座標データを、最小自乗法を用いて、楕円放物面に近似する。 <質問> Wikipediaで二次曲面について調べると、楕円放物面の方程式が二つ書いてありました。 http://ja.wikipedia.org/wiki/%E4%BA%8C%E6%AC%A1%E6%9B%B2%E9%9D%A2 aX^2 + bY^2 + 2cZ = 1 (符号数(2,0))(1) -aX^2 - bY^2 + 2cZ = 1 (符号数(0,2))(2) 初歩的な質問なのですが、 (1)と(2)は何が違うのでしょうか? 符号数の意味は何でしょうか? ご指摘の程宜しくお願いします。 回転放物面の表面積 上に凸の放物線と、その放物線にx軸に対して対称な放物線のつくる領域を、y軸を軸に回転させた立体の表面積は、高校数学の範囲で求められますか? 体積は定積分で求められると思うのですが… 最小二乗法 楕円放物面 数千のxyz座標データを、最小二乗法を用いて、ax^2+by^2+2cz=1の楕円放物面に近似したいのですが、どのようにしたらいいですか? ご存知の方教えてください。 宜しくお願いします。 放物線について 放物線と、点Aからその放物線に引いた2本の接線と放物線の交点をα、βと置くと、 点Aのx座標は(α+β)/2と表せると思うのですが、この証明がよくわかりません。 よかったら教えて下さい。 よろしくお願いします。 円錐と放物線の問題 円錐が、直線FBのような母線に平行な面によって切り取られた時、断面は放物線の形になります。この画像から、どのようにして放物線の焦点と準線が決定されるか説明してください。 何故、放物幾何と名づけるのでしょうか。 (楕円幾何)、放物幾何、(双曲幾何) (楕円幾何)は曲率が正。 (双曲幾何)は曲率が負。 とすると、放物幾何は曲率が0と推測します。 最初は、(回転方物面)かなーと思っていたのですが、 良く考えると、拙い知識でも、曲率が0とはなりません。 質問です。 (1) 三つの幾何の分類名として、(ユークリッド幾何)では、座り心地が悪いので、(放物幾何)と名づけた。 (2) 実際に、(ユークリッド幾何)以外のモデルが存在する。 (3) 私の理解が根本的に間違っている。 (1) であるならば、スッキリしますが、(紛らわしい名称)と思います。 (2) であるならば、モデルを教えて欲しいのです。 (3) の可能性が一番高いです。 よろしく、お願いします。 放物線 放物線 Y=X²-2X を、X軸方向へ-3、Y軸方向へ4だけ 平行に移動して得られる放物線の方程式は Y=(?)、 直線Y=3に関して対照移動して得られる放物線の方程式は Y=(??)である。 この(?)と(??)の答えは何ですか? どのように計算していけばいいですか? 考え方もわからないので、 どなたか、わかりやすく教えてもらえませんか? 空間内で放物線を回転させたときの体積 <問題> xyz空間内で、z=x^2ー3/4, y=0 で表される放物線をz軸のまわりに1回転してできる放物面を平面z=xで切ったとき、放物面と平面z=xで囲まれる部分の体積を求めよ。 空間は最も不得意な領域なので、図自体がうまく描けません。解くどころではありません。どなたか解答をよろしくお願いいたします。 放物線についてです。 今、大学受験生なのですが、どうしてもわからない問題があります。 xy平面上で曲線√X+√Y=1は放物線の一部(放物弧)であることを示せ。 という問題なのですが、どのように証明したらよいのでしょうか? 誰か、教えていただけませんでしょうか? 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 放物線の書き方 現在、AutoCADLT2006を使用しています。 ある式の放物線をCAD上で描きたいのですが何か方法はあるのでしょうか? ご存知のかたは、是非教えてください。 また、式に数値を代入しXY座標を求め、スプラインでつなぎ曲線を描きましたが、その曲線を延長させることは可能なのでしょうか? 宜しくお願い致します。 質問を追加します。 もし、AutoCADで放物線が描けないのであれば、フリーのCADソフトで放物線を描けるソフトはあるのでしょうか? 宜しくお願い致します。 放物面鏡のコマ収差 物理・光学には弱い天文マニュアです。ニュートン反射望遠鏡のような放物面鏡の焦点で天体撮影をする場合中心軸が完全な星像であっても軸からずれるにしたがってコマ収差が発生し像が乱れるというのは昔からの知識で知っていました。 さて、CMOSチップで天体を撮像する時代になりましたが、この場合チップが小さければ小さいほどコマ収差の影響は受けないといえますか。それとも小さいチップはコマ収差も拡大されるので同じだといえますか? 具体的例 15cmF4ニュートン反射 大 フルサイズ 36mmx24mm 小 1/1.9 7.3mmx4.1mm 数3 放物線 放物線y^2=4pxの焦点をFとする。点Qがこの放物線上を動くとき、線分FQの中点Pの軌跡を求めよ。 ただし、pは0でない定数とする。 お願いします。 放物線 放物線y=(x-1)^2をx軸方向にqだけ平行移動すると放物線y=x^2+4xとなるとき、p=(1)q=(2)になる。 この問題の解法を教えてください。よろしくお願いします。 回転放物面の面積要素 回転放物面2z=x^2+y^2上の領域Dの表面積Aは∫∫_DdSと表すことができる。このときの面積要素dSをr,θを用いて表すとき、ヤコビアンを考えてrdrdθになりますが、r(r,θ)ベクトル=rcosθi+rsinθj+1/2r^2kと置いたとき、dS=|dr(ベクトル)/dr×dr(ベクトル)dθ|drdθを考えるとdS=rdrdθになりません。なぜでしょうか。。 放物線について(急いでます!) 「全ての放物線は相似である」ということの証明方法が知りたいのです。 どうぞよろしくお願いします。 放物線について CADで放物線を書きたいのですがY=X^2のような式で図面を書きたいのですが。 放物線の接線 放物線の接線の公式ってありますでしょうか? 問題で、放物線の式はわかっていて、その放物線上の点のX座標をaと置く。しか書いていなくて、その接線の式を求めるようなのですが、わかりましたら教えてください。。。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など