[大学編入]電気双極子の問題
図1のように、電荷±q,長さdの電気双極子P=qdを真空中(誘電率:ε0)に水平に固定するものとする。このとき極座標表示において、任意の点Aにおける電位Φは、電気双極子中心Oからの距離rおよび電気双極子軸とのなす角θに対してr≧dでは近似的に、Φ≒qdcosθ/4πε0r^2と表される。なお、P,dは上部に→が付いているのでベクトルです。
このとき、
(1)点Aにおけるr方向の電界の大きさErならびにθ方向の電界の大きさを示せ。
(2)単独電荷がつくる電界と電気双極子がつくる電界の大きさについて、距離rに関する減衰の違いを述べよ。また、その物理的理由を述べよ。
(3)電気双極子に対して、一様な外部電界Ef(電気双極子とのなす角α)を印加したとする(図2)。このとき、電気双極子のポテンシャルエネルギーU、および電気双極子にかかる力を示せ。ただし、簡単のために電気双極子自身が保有するエネルギーは含めない。
(4)電気双極子の中心Oと同心になるように、半径aの肉厚が無視できる導体球殻で囲む(図3)。外部電界Ef=0とし、電位がcosθに比例するラプラス方程式の解はΨ=(C/r^2 +Dr)cosθ[C,D:積分定数]の形で表せるとして、球殻内の電位分布を求めよ。
とあるのですが(4)が何時間やっても解けません。先生に聞いたら恐らく電気映像法(鏡像法)を+q,-qに用いてそれぞれ足し合わせて仮に置いた電荷の長さを極限で0に近付けるらしいのですが、その値が上手く計算できず0/0の形にならないので困っています。
ちなみに図3は図1のOを中心に導体球で覆われているものです。全部載せるとぼやけて良く分からなくなるので載せませんでした。
どなたか特に(4)について求め方と答えを教えて下さい。
ちなみに、(1)Er=qdcosθ/2πε0r^3,Eθ=qdsinθ/4πε0r^3,(2)|E|=√5 πqd/4πεr^3,
(3)U=-1/2(P Efcosα)、電気双極子にかかる力N=qEf・d/2 sinαとなりました。こちらも間違い等を観て頂きたいです。お願いします。
お礼
本当ですね。 ありがとうございました!