締切済み 複素フーリエ級数 2001/12/04 01:44 f(x)=e exp|x| うまくかけませんでしたがeの絶対値のx乗の複素フーリエ級数の答えをお願いします。自分で解いてみるとeのπ乗がうまくΣの前にでません。 みんなの回答 (1) 専門家の回答 みんなの回答 stomachman ベストアンサー率57% (1014/1775) 2001/12/05 17:20 回答No.1 f(x) = exp(|x|) の複素フーリエ級数を求めたいというご質問でしょうか。 xが複素数なのか実数なのか、そこがはっきりしませんけど、 f(x) = exp(|x|) はどのみち実数値関数で、しかも偶関数です。 フーリエ級数を考える以上、xの変域が指定されているか、あるいは周期関数になっているのでなくてはおかしいですね。 そこで、たとえばxは実数で、f(x)は -π≦x<πで定義されている、ということにしてみましょう。 すると、複素フーリエ級数 f(x) = ΣF[n]exp(inx) (Σはn=-∞~∞) において、 ・f(x)は偶関数だからF[n]は実数。 ・f(x)は実数値関数だからF[-n] はF[n]の複素共役。 ∴F[n]は実数で、F[-n]=F[n]である。 ということが直ちにわかります。 具体的にやってみますと、 F[n]= (1/π)∫f(x) exp(-inx) dx (積分は-π~π) = ∫f(x) cos(nx) dx + i ∫f(x) sin(nx) dx (積分は-π~π) というわけですが、f(x), cos(nx)は偶関数、sin(nx)は奇関数なので第二項は0であり、 F[n]= ∫f(x) cos(nx) dx (積分は-π~π) ここでf(x) cos(nx)は偶関数だから、 F[n]= 2∫f(x) cos(nx) dx (積分は0~π) = 2 ∫exp(x) cos(nx) dx (積分は0~π) となります。 この計算なら簡単でしょう?公式集にも載ってる筈です。 定数exp(π)が現れますが、それが直ちにΣの外に括り出せる訳ではありません。というのはnが奇数か偶数かによってF[n]に因子(-exp(π)-1)か(exp(π)-1)が現れるからです。しかしこの定数exp(π)が括り出せなくても何の不都合もないと思いますが? 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 複素フーリエ級数 複素フーリエ級数の問題で f(x)=exp(-|x|) (-π≦x<π) がうまくできません。 どなたか解答を教えて下さい あと。実フーリエ級数に直したものも教えていただけると幸いです 複素フーリエ級数を求めよ、と 複素フーリエ級数を求めよ、と 複素フーリエ級数展開を求めよ の違いが最近分からなくなりました。 f(x) = ○○ と与えれた場合、(例えば sinx) それを Cn = C0 + Σ △△ の形に変形するのが 複素フーリエ級数を求めた形になるのでしょうか? ならば複素フーリエ級数展開は…?とこんがらがっています。 どなたか教えてください。 複素フーリエ級数について 周期2πの複素フーリエ級数は f(x)=Σ[n=-∞,∞] C_n•e^inx C_n=(1/2π) ∫[-π→π] e^(-inx)•f(x)dx で、あらわされる。 これを周期2Lになったら、どうなるか? という問題なのですが、どうしたらいいのか分かりません。 やり方を教えてください。 あと、答えだけでいいので、教えてください。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 複素フーリエ級数 この問題の解き方を教えて下さい。 問. f(x) = 1 - |x| (-2≦x≦2) 周期4(周期2L=4よりL=2) の複素フーリエ級数を求めよ。 答え・・・Σ(n= -∞~∞) 2(1-(-1)^n)/(n^2 * π^2) * e^(inπx/2) 複素フーリエ級数:Σ(n= -∞~∞) Cn* e^(inπx/L) Cn = 1/2L ∫(-L → L) f(x) * e^(-inπx/L) <解いたやり方> Cn = 2 * (1/4) ∫(0→L) (1-x)*e^(-inπx/2) dx = (1-(-1)^n)/inπ - (2(1-(-1)^n)/(n^2 * π^2)) ← この時点で間違っています。 C0 = 0 よろしくお願いします。 フーリエ変換の問題(複素フーリエ級数) フーリエ変換の問題(複素フーリエ級数) 次の-L≦X≦Lで定義された関数f(x)を f(X+2nL)=f(x)により -∞<x<∞に拡張した周期関数の複素フーリエ級数展開を求めよ f(x)=0(-L≦X<0), 1(0≦X<L) ここで教えていただいたのですが、 恥ずかしながらあまり理解できなかったため、再度質問します 複素フーリエ係数が cn==∫【-L→L】f(x)*exp(-i n x)/2πdx この公式より cn=∫【-L→0】0*exp(-i n x)/2πdx +∫【0→L】1* exp(-i n x)dx コレであっていますか? なんだか単純なような・・・ 回答お願いします 複素フーリエ、実数形 ・次の関数の複素形フーリエ級数を求めなさい。実数形に直せ。 sin^3(x) これの複素形フーリエは sin^3(x)=(-1/8i)(exp(3ix)-3exp(ix)+3exp(-ix)-exp(-3ix) というのは分かったのですが、これを実数形に直したら、 sin^3(x)=(-1/4)(sin3x-3inx) になることがわかりません。アドバイスをお願いします。 それと、f(x)=0(-π<x<0),1(0≦x≦π) の複素形フーリエ級数の答えが、 f(x)=(1/2)+(1/πi)Σ(1/(2n-1){exp(i(2n-1)x)-exp(-i(2n-1)x) になるらしいのですが、 僕が計算した結果 (1/2)+(1/πi)Σ(1/2n)(1-(-1)^n) になりました。実数形はどうなるのでしょうか? どうしたらよいかアドバイスをお願いします。 複素形フーリエ級数 f(x)=|sin x| (-π≦x≦π)という複素形フーリエ級数の時方がわかりません… 複素形と実数形を求めるのですがどうしたら求めれるのでしょうか? 複素フーリエ級数の問題が分かりません 複素フーリエ級数の問題が分かりません f(t)は0<=t<T で、f(t)=exp[-at]、0<=t<T をとり、以下これを繰り返す周期Tの周期関数であるとする。 (a>0)この関数を複素フーリエ級数に展開しなさい。 正直なところ答え方もよくわからないので解き方答え方を載せていただけると嬉しいです 複素形フーリエ級数について いつもお世話になっています 大学の勉強でフーリエ解析をしているのですが、 よく分からない問題があるので質問させていただきます 問題は 次の関数の複素形フーリエ級数を求め、次に実数形になおせ f(x) = 0 (-π < x < 0 ) x (0≦x≦π) というものです。 回答はあるのですが、∑の範囲がn=1から∞になっています。 授業では∑の範囲を-∞から+∞までで解いているので、混乱してしまいます (ちなみに教科書の解答は π/4 + i∑(-1)^n/2n ( exp(inx)-exp(-inx) ) -1/π∑1/(2n-1)^2 {exp(i(2n-1)x + exp(-(2n-1)x)} となっています(分かりにくくてすみません・・・)) 教科書の解答はどのように導いているのか、また、∑の範囲を-∞から+∞までにするとどのような回答になるのか、教えていただけると嬉しいです。 複素フーリエ級数の求め方を教えて下さい 以下に示す関数の複素フーリエ級数の求め方を教えて下さい (1)f(x)=1+x(-1<x≦0),f(x)=1-x(0<x≦1) (周期2) (2)f(x)=1/x (-π≦x<π) (周期2π) フーリエ変換の問題(複素フーリエ級数) フーリエ変換の問題(複素フーリエ級数) 次の-L≦X≦Lで定義された関数f(x)を f(X+2nL)=f(x)により -∞<x<∞に拡張した周期関数の複素フーリエ級数展開を求めよ f(x)=0(-L≦X<0), 1(0≦X<L) この問題が解けないので、どなたか教えてほしいです。 f(x)=xのようなかんじだったらとけるのですが、この問題のような形式だと、詰まってしまいます・・・ 複素フーリエ級数がわかりません g(x)=0(-1≦x<0),=x(0≦x<1)の複素フーリエ級数がわからなくて困っています。 わかる方がおられましたら、回答をよろしくおねがいします。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 三角関数の複素フーリエ級数展開 f(x)=sin^3(x)を複素フーリエ級数展開する問題なんですけども Cn=1/2π∫[-π,π]sin^3(x)*exp(-jnx)dx =1/2π∫[-π,π]{(exp(jx)-exp(-jx))/2j}^3*exp(-jnx)dx と変形した後の式の整理ができません。というか↑の変形でいいのでしょうか? フーリエ級数展開について 周期2の関数 f(x)=0 (-1<x≦0) f(x)=x^2 (0<x≦1) の複素フーリエ級数を求め,実フーリエ級数に直す過程の計算を教えて下さい。 複素フーリエ級数の質問です 大学のレポート問題が解けず困っています。分かる方、ご回答をお願い致します。 また、自分が複素フーリエ級数についてよく分っていないので意味不明な計算をしているかもしれません。 その際はご指摘いただけると有り難いです。 f(x)=0(-1≦x<1),x-1(1≦x<3) f(x+4)=f(x) この関数f(x)の複素フーリエ級数を求めて実数形のフーリエ級数と一致することを確かめよ、という問題です。 この問題の答えは 複素形(?) (1/2)+(i/π)Σ[n=-∞~∞(n≠0)](1/n){cos(nπ/2)+(i+2/nπ)sin(nπ/2)}e^inπx/2 実数形 (1/2)-(2/π)Σ[n=1~∞]{{(-1)^(n+1)/(2n-1)}cos{(2n-1)π/2}x +(1/n){(2/nπ)sin(nπ/2)+cos(nπ/2)}sin(nπ/2)x} となっていました。 複素形については答えを出せたのですがそれを実数形に変形するところがうまくいきませんでした… f(x)~(1/2)+(i/π)Σ[n=-∞~∞(n≠0)](1/n){cos(nπ/2)+(i+2/nπ)sin(nπ/2)}e^inπx/2 =(1/2)+Σ[n=1~∞]{-(2/i2nπ){cos(nπ/2)+(i+2/nπ)sin(nπ/2)}{e^(inπx/2)-e^(-inπx/2)} =(1/2)-Σ[n=1~∞](2/nπ){cos(nπ/2)+(i+2/nπ)sin(nπ/2)}sin(nπ/2)x 上の式のΣ以降を計算すると、実数形の答えの中にある Σ[n=1~∞](-2/nπ){(2/nπ)sin(nπ/2)+cos(nπ/2)}sin(nπ/2)x} の形は出てくるのですが、残りの Σ[n=1~∞](2/nπ){i*sin(nπ/2)}sin(nπ/2)x の部分をどう変形すれば Σ[n=1~∞](2/π){{(-1)^(n+1)/(2n-1)}cos{(2n-1)π/2}x の形になるのかが分からないのです… もしsin(nπ/2)が(-1)^(n+1)(nは奇数)に対応するのならば残りのi*sin(nπ/2)xが {-1/(2n-1)}cos{(2n-1)π/2}xに対応するのだろうと思いましたがやはり解決には至りませんでした… お分かりの方、回答の方をよろしくお願い致します。 フーリエ級数? f(x)=x (0<x<π)をフーリエ展開せよという問題です。 これを解くときフーリエ正弦級数、フーリエ余弦級数を使い展開するみたいなのですが、 答えしか載ってなくて課程がわかりません・・・。 とりあえず、正弦、余弦級数は求まったのですが、 それをどう駆使してもとめればいいのでしょうか? いまいちわかりにくい質問ですいません。。 フーリエ級数です。 f(x)=x(2-x) (0≦x≦2) 問1)フーリエ余弦級数展開を求めよ。 問2)フーリエ正弦級数展開を求めよ。 これらの答えを教えてください。 お願いいたします。 フーリエ級数について フーリエ級数について 現在複素解析を勉強している大学生です。 フーリエ級数で分からない問題が出てきましたので質問させていただきました。 問題は以下の通りです 実変数xの関数 1/(3+cos(x)) のフーリエ級数を求めよ どのようにしてとけばよいのでしょうか。 よろしくお願いします。 フーリエ級数の問題 f(x)は周期2πをもつとする。 f(x)のフーリエ級数を求める。 (1)f(x)=x(-(π/2)<x<(π/2)),π-x((π/2)<x<(3π/2)), この条件でフーリエ級数を求めると、 グラフを描くと奇関数になるので、a0=0,an=0, bn=(4/nの2乗π)sin(π/2)n したがってフーリエ級数は、 f(x)=(4/π){sinx-(1/9)sin3x+(1/25)sin5x-・・・} でいいのでしょうか? (2)f(x)=xの2乗(-(π/2)<x<(π/2)),π/4((π/2)<x<(3π/2)), グラフを描くと、偶関数になったので、bn=0, a0=(πの2乗)/6, an=(2/π){(π/nの2乗)cos(π/2)n-(2/nの3乗)sin(π/2)n} よって、 f(x)=((πの2乗)/6)+(2/π){-2cosx-(π/4)cos2x+(2/27) cos3x+・・・} これでいいのでしょうか? ご回答よろしくお願いします。 e^x のフーリエ級数の求め方 f(x)=e^x (-π<x<π) のフーリエ級数の求め方及び答えを教えてください 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など