締切済み F4-60X フラットバッカー フェイズIIの価格 2005/08/04 11:44 F4-60X フラットバッカー フェイズIIが中古で\20,000では高いでしょうか?安いでしょうか? みんなの回答 (1) 専門家の回答 みんなの回答 miyatatu_2005 ベストアンサー率23% (304/1279) 2005/08/04 12:36 回答No.1 それは物によります。 中古と言っても本当に数回しか使ってなく保証書など付属品がついているものもあるし、傷だらけでも中古です。 なので、実際に見れる(手に持って)んだったら見て判断したらいいと思います。 そして納得して買うんだったら安いかもしれません。 ヤフーオークションとかで購入の場合は特に気をつけてください。 僕は2本買いましたが傷も見た感じ無く良い買い物をしたと思っています。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 趣味・娯楽・エンターテイメントアウトドア釣り 関連するQ&A f’(x)って何? 先日数学IIの教科書をパラパラと見ていたのですが、 今まで習っていたf(x)ではなく、 f'(x) と、書いてあるページがありました。 前後を見てみたのですが、よくわからなかったので、 f(x)との違いを教えてほしいのです。 f(x)=ax^4+bx^3+cx^2+dx+e f'(x)=4ax^3+3bx^2+2cx+d って書いてました。 f(x)の式が、下のf'(x)の式に変わったのでしょうか? わかっている方にはとてもバカな質問だろうと思いますが、 何だかとても気になるので、教えてください。 F(x) = 1-e^(-λx)の1はどこから? 統計学入門の7.8 ii) 「f(x) が指数分布Ex(λ)の場合」を解いています。 添付画像をご覧ください。 私の計算では、 F(x) = - e^(-λx) になったのですが、 以下のサイトによると、 F(x) = 1 - e^(-λx) になっています。 https://parco1021.hatenablog.com/entry/2020/05/23/203000 そして、このサイトの答えで解くと、本の解答と一致するので、 このサイトの答えが正しいようです。 しかし、この"1"はどこから来たのでしょうか? F(x)はf(x)を積分したものじゃないんですか? それとも(やっぱり)私の計算が間違っているのでしょうか? 教えて下さい。お願いします。 微積 f (x)+f '(x)→0 (x→∞) f:(0,∞)→実数として、f (x)+f '(x)→0 (x→∞)だとする。…(1) そのときf (x)→0 (x→∞)であることを説明しなさいという問題ですが、 f '(x)→0 (x→0)が必要十分と考え f (x)≠0 (x→0) だとして(f(x)=0 (x→0) だったらそれで終了) f '(x)/f (x)→-1 …(2) となる。 x→∞でf '(x)→0じゃない場合、 f '(x)→0以外の実数定数 もしくは±∞となるはずだが、 f '(x)がx→∞で実数定数になる場合、f(x)が発散してしまうため条件(1)を満たせない f '(x)がx→∞で±∞になる場合、f(x)が逆の符号で発散しないと条件(2)を満たさないが、f '(x)→+∞のときf (x)→-∞、f '(x)→-∞のときf (x)→+∞にはなりえない。 よってx→∞のときf '(x)→0 になる。 という感じで大まかな考え方はあってますか? 詰将棋って楽しいの??新たな趣味の世界へ OKWAVE コラム f(x) が |f(x)|≦x^2(xの二乗)であるとき f′(0) f(x) が |f(x)|≦x^2(xの二乗)であるとき f′(0) について考察せよ。 という問題がわかりません。 だれか教えてください。 f(f(x)) みたいなこと出来ないでしょうか? f1(x)=x^2+x+3=10 , f2(x)=(f1(x))^2+f2(x)+3 , f3(x)=(f2(x))^2+f3(x)+3 ・・・・・・ fN(x)=(f(Nー1)(x))^2+f(N-1)+3 Nに数字を入れると FN(x)の値がわかるような方法はないでしょうか? 数列のような気もするのですが・・・ fの後に続く文字は第何項という意味です わかりにくくてすみません>< f(x)=f1(x)におけるf(x)は何関数? 例えば、xを変数にもつ以下の3つの関数、f(x)=f1(x)、f(x)=f2(x)、f(x)=g1(x)がある場合、この左辺のf(x)は何関数と呼ぶのでしょうか? 左辺の部分は、「xを変数にもつ関数」ということで、より広い一般的な関数を表し、 右辺は、「その実際の中身を表す関数」だと思うですが、 左辺のf(x)のような関数を何関数と呼ぶのでしょうか? (基本関数とか広義関数とかでしょうか(すみませんかなり適当にあてずっぽうに書いています。)) どなたか正しい呼び方を教えてください。 よろしくお願いします。 ∫e^f(x)dx={1/f’(x)}・f(x)+ C {e^f(x)}’={e^f(x)}・f’(x)ですが、 ∫{e^f(x)}・f'(x) dxにて ~となるから =(e^f(x))+C の~となるからの部分に何が入るんですか><? ∫e^f(x)dx={1/f’(x)}・f(x)+C が成り立たないと ∫{e^f(x)}・f'(x) dxにて ~となるから =(e^f(x))+C が矛盾しませんか? 常にf’’(x)>0とf’'(x)=0は何を表す? 画像にて、「常にf’’(x)>0」はf’(x)の「常にf(x)に対するf’(x)の傾きが上がる」という事を表し、 f’'(x)=0 は f'(x) のf(x)に対する傾きが 0 (x軸に平行な直線)であることを意味するんですか? f(x) < f(0) = 0 について 0 < x < π/2 のとき f(x) = -tanx+x とすると f(x) < f(0) = 0 となることを示せ。 この問題わかる人いたら教えてください。 よろしくお願いします。 f(x) < f(0) = 0 について 0 < x <π/2 のとき f(x)=log(cosx)+x2/2とおくと f(x)<f(0)=0 となることを示せ。 この問題が分かるひといらっしゃいませんか? いたら教えてください。 よろしくおねがいします。 関数f(x)は微分可能で、-1<f'(x)<0,f(0)=1とする。 関数f(x)は微分可能で、-1<f'(x)<0,f(0)=1とする。 (1)a<bのときf(a)>f(b)およびf(a)+a<f(b)+bが成り立つことを示せ。 (2)曲線y=f(x)とy=xはただ1点で交わることを示せ。 (3)(2)の交点のx座標をcとする。x(1)<cとし、x(2)=f(x(1))、x(3)=f(x(2))と定める、このとき x(1)<x(3)<c<x(2)が成り立つことを示せ。 どなたか教えて頂けませんでしょか? f '(x)で表すとどのようになりますか? lim[h→0] { f(x-2h)-f(x) }/h をf '(x)を使って表すとどうなりますか? 答えは -2f '(x) になります。 なぜこの答えになるのかわからないので教えてください。宜しくお願いします。 婚活のリアルとマッチングアプリの嘘?運命の出会いを引き寄せる方法 OKWAVE コラム F(x)を求めよ 0<x<1として (1-x)F'(x)-2F(x)=0 をみたすF(x)はどういったものですか? これは自作したので、数学の問題としてはまずい箇所がふんだんにあると思います。 まずい箇所を教えてくださるのでも結構です。 4次以下整式、f(1+x)+f(1-x)=2x^2 整式 f(x)は, f(1+x)+f(1-x)=2x^2, f(3)=-3f(-1) を満たしており,方程式 f(x)=0 は2重解をもつ. このような整式で次数が4次以下のものを求めよ、という問題なのですが、 答えは、x(x-1)^2 と (2±√3)/4 * (x-1)(x+3∓2√3)^2 とのことです。 どうか教えていただけないでしょうか。 f(x)+∫f(t)=sinxのときf(x)は? 関数f(x)は微分可能でf(x)は連続としf(x)は関係式 f(x)+∫[0~x]f(t)=sinx の式を満たしている。という問題です。(1)~(4)は解けたつもりです。しかし。 (1)f(x)+f´(x)の関係式は?――――f(x)+f´(x)=cosx (2)(d/dt)f(x)e^xを求めよ。――――(d/dt)f(x)e^{x}=e^{x}(f(x)+f´(x))=e^{x}cosx (3)∫[0~x]e^{t}(sint+cost)=∫[0~x]e^{t}(sint-cost)+e^{x}(sinx+cosx)-1の証明 (4)∫[0~x]e^{t}costを求めよ。――――∫[0~x]e^{t}cost=[e^{x}(sinx+cosx)-1]/2 (5)f(x)は? という問題です。(1)~(4)は解けたつもりです。しかし(5)が解けません。(1)~(4)をどう使えばいいの? f(x)=x^4+2x^3-5x^2-2x+5のときf(√3ー1)は□ f(x)=x^4+2x^3-5x^2-2x+5のときf(√3ー1)は□となる。 次数下げ そのまま計算するのは面倒で芸がなさすぎる。√3ー1をαとおいて、αの満たす2次の等式を利用して「根号を解消して次数下げ」が定石である。 教えてほしいところ √3ー1をxと置いて、xの満たす2次の等式を利用して次数下げしてもいいんですか?? また、何故xではなくαと置いているんでしょうか?? 教えて下さい a{e^f(x)}’=e^f(x)・f’(x)です が、この右辺の積分 ∫e^f(x)・f’(x)dxはf’(x)∫e^f(x)dx=f’(x)・(1/f(’x))・(e^f(x))+C=(e^f(x))+Cと元通りになるんですか? d/dx{F(x)-F(-x)} F'(x)=f(x)とすると、d/dx{F(x)-F(-x)}をf(x)で表すとどうなるんでしょうか????自分で解いたらf(x)+f(-x)となったのですが、学校の教師は2f(x)と言っていたのですが。。。 f(2x)=2f(x) の両辺を微分すると 2f'(2x)=2f'(x) となることの証明 f(2x)=2f(x) の両辺を微分するとどうなるか? 答えは 2f'(2x)=2f'(x) でした。なんとなくそうなることは わかります。でも証明ができません。具体例を作って実験して 成功しても、成功例がひとつあることは証明にはなりませんよね? どうやったら証明、あるいは納得できるでしょうか? f(x)= f(x)= x^3+2ax^2+(1-a)x +a(a^2-a-1) g(x)=x^2+ax-a (a≠0)のとき、 f(x)= g(x)=0が共通解pを持つようなaの値を全て求めよ という問題で、 答えには 字数を下げるために f(x)÷g(x)を筆算しf(x)=g(x)(x-a) +(1-a^2)a+(a^2-1)として、 f(p)= g(p)=0だから0=(1-a^2)a+(a^2-1) としているんですが、そもそもf(x)÷g(x)をするときg(x)=0となるxのときを別に考えてなくていいんですか? 筆算のあとにx=pを代入してf(p)=g(p)=0としていますが、 ならばその前にやった筆算は0で割ったことになってしまう気がするのですが? ふと分からなくなりました… 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 趣味・娯楽・エンターテイメント アウトドア 登山・キャンプ釣りバーベキュー・アウトドア料理その他(アウトドア) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など