ベストアンサー 複素解析 2005/06/18 18:22 次の二つの問題が分かりません ・cos(z)=3の三角方程式を解け ・cos(z)(複素余弦関数)の逆関数を求めよ 何をすればいいのかまったく分かりません どなたかお願いします みんなの回答 (1) 専門家の回答 質問者が選んだベストアンサー ベストアンサー toranekosan ベストアンサー率32% (38/116) 2005/06/18 18:59 回答No.1 1) cos(z)={exp(iz)+exp(-iz)}/2=3 exp(iz)+exp(-iz)=6 exp(2iz)-6exp(iz)+1=0 2) cos(z)={exp(iz)+exp(-iz)}/2=y exp(2iz)-2yexp(iz)+1=0 ここから、z=f(y)な関数を導けばよい。 質問者 お礼 2005/06/22 18:50 ありがとうございました。 今回の逆関数はzとyを入れ替えればいいということが分かって解くことができました。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 複素解析の問題です (1)次の複素数zに対して、e^(z)の実部と虚部を求めよ。 z=3+(2/3)*pi*i (2)z=25iのときにsin(z),cos(z),tan(z)の実部と虚部を求めよ。 (3)加法定理 cos(z+w)=cos(z)cos(w)-sin(z)sin(w)を示せ。 (複素三角関数) (4) |sin(z)|≦1は成り立つか。 成り立つならば証明せよ。 成り立たない場合はその例を挙げよ。 困ってます。誰かお願いします。 複素関数の問題です 複素関数の問題です。 次の問題が解けなくて困っています。どなたか解説できる方宜しくお願いします。 f(z)は,|z|≦1の領域で正則な複素関数とする. (1) nを自然数とするとき,∫[0→2π]f(e^iθ)cos(nθ)dθ={π/(n!)}f^(n)(0)が成り立つことを示せ. (e^iθ=zで置換) (2) mを自然数とするとき,∫[0→2π]f(e^iθ)cos^(2m)θdθ={π/2^(2m-1)}Σ[k=0,m]C(2m,k){f^(2m-2k)(0)}/{(2m-2k)!}が成り立つことを示せ.ただし,f^(0)(0)=f(0)とする. (3) ∫[0→2π]cos(2mθ)cos^(2m)θdθ=π/2^(2m-1)を示せ. (zの領域に注意) 複素関数の問題 複素関数の問題 次の複素関数の問題ですが,この関数の特異点が分からずに困っています? f(z) = 2 / ( λz^2 + 2μiz - λ ) ただし z :複素数 λ・μ:実定数でμ>λ>0です 追加で,この複素関数の特異点も教えていただけると幸いです f(z) = z^-c / ( 1+z ) ただし、0<c<1 です これの特異点は-1でいいのでしょうか? 以上、よろしくお願い致します 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 複素関数の微分不可能性について! 閲覧ありがとうございます。 複素関数f(z)=Re zについて、どこでも微分不可能なことを示せ。 という問題なのですが、教科書に答えが載っておらずわかりません。 コーシーの方程式はまだ習っていないので、別の方法で解きたいのですが… どなたか、解答していただけるとありがたいです! よろしくお願いします。 複素解析の質問です 複素解析の問題なのですが、0<=x<=2, 0<=y<=pi/2 が範囲として与えられているとき|e^z| の最大値を求めよという問題です。まず、|e^z| = |e^(x+iy)| = |e^x||e^iy| = |e^x||cos(y) + isin(y)| と変形し、場合わけをしようと思ったのですが、|e^x|の部分の最大値は簡単に分かるのですが、|cos(y) + isin(y)| の部分でてこずってます。もし分かる方いらっしゃいましたらご教授頂けたら嬉しいです。 複素解析について 次の関数の極と留数をすべて求めよ f(z)=2z/(z^2-1) この問題についてなんですが、 z=1,-1が単純極でそれぞれ定理にあてはめるというやり方であっていますか? 複素積分に関する問題 複素積分の問題を解く過程で 次の部分分数展開の問題がわかりません (1)1/z(z-1) (2)1/z^2-3z+2 (3)z/z^2-1 (4)1/(z-a)(z-b) これらの複素関数f(z)を部分分数展開せよ という問題です どなたかお願いします 複素解析の留数を求める問題について 複素解析の問題と回答に以下のようなものがあったのですが、勉強不足で略解を理解できませんでした。 特に第1式から第2式への計算思考手順がわかりません。 この問題を特に当たっての思考手順(1.z=1/2は z^2/(cos πz)の1位の極なので~~のような)を教えていただけませんでしょうか。 よろしくお願いします。 複素微分について 複素関数 f(z) = u(x,y) + iv(x,y) ・・・・・ u≠0、v≠0 は、2つの実数関数 u と v の組で表されるので、実数で微分したり積分したりすることはできると思いますが、 g(z) = u(x,y) ・・・・・ v = 0 h(z) = iv(x,y) ・・・・・ u = 0 は C-R の方程式を満たさないから、h や g を複素数で微分することは不可能なのですよね? つまり、実関数を複素関数の一部と見なしても、実関数を複素数で微分することはできないと考えてよいかということです。 あんまり当たり前のことなのか(笑)、私が持っている2つの複素関数の本にはその類いの説明はありません。 複素積分を使わずに解ける 複素関数の勉強をしていて、疑問に思ったことがあります。 次の定積分を求めよ、という問題です。 ∫(from 0 to ∞)exp(-x^2) cos2bx dx (bは定数) この問題は、複素平面上の長方形状の積分路に沿って積分して答えが出せたのですが、以下のようなやり方をしてみました。 まず、求める積分はbの関数とみなせるので、I(b)とおきます。 次にI(b)をbで微分します。被積分関数をbで偏微分し、部分積分を使うと、 dI(b)/db = -2bI(b) となります。これはbの微分方程式になっているので、これを解くと、 I(b) = Aexp(-b^2) (Aは定数) となります。元の式にb=0を代入すれば、 I(0) = sqrt(π)/2 となるので、 I(b) = sqrt(π)exp(-b^2)/2 という結果になります。 なんだか複素積分をするよりも簡単に答えが出せたのですが、このやり方でもよいのでしょうか。参考書にはこの方法が載っていなかったのですが。 複素解析の留数の計算 こんばんは。 複素解析の問題で、キャンパスゼミやその他の資料も参考にしたのですがどうしてもわかりません。問題は以下のものです。 複素関数 f(z)=e^z-i について点 z=πi/2 における 1/f(z) の留数を求めよ。 原点を中心とした半径πの半時計回りの円をCnとする。 ローラン展開から求めるべきなのでしょうか? だとすれば、利用するマクローリン展開だけでも示していただけると大変ありがたいです。 宜しくお願いします。 複素関数の問題 複素関数の問題 複素平面上の点A(1),B(i)を結んだ線分AB上をzが動くとき,w=z^2+2zはどのような図形上を動くか?(zは複素関数,iは虚数)という問題で,z=1-t+it (0≦t≦1,t∈R) とパラメータtでzを置いたり,w+1=(z+1)^2としてみたりしたのですが,どのような図形上を動くのかがわかりません. どなたか教えていただけないでしょうか?? 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 複素関数cos(z)の微分について w=u+iv=cos(z)とおいたときに,wがzの全域でコーシー・リーマン方程式(∂u/∂x=∂v/∂y,∂u/∂y=-∂v/∂x)を満たすことを示し,微分係数を求めよ.(z=x+iy,iは虚数単位) と言う問題です. 解答を見てみると, cos(z)=cos(x)cosh(y)-isin(x)sinh(y) の加法定理の関係式を使い, u=cos(x)cosh(y) v=-sin(x)sinh(y) したがって, ・∂u/∂x=-sin(x)cosh(y) ・∂u/∂y=cos(x)sinh(y)・・・I ・∂v/∂x=-cos(x)sinh(y) ・∂v/∂y=-sin(x)cosh(y)・・・II よって,コーシー・リーマン方程式を満たしている. となっていました. 疑問なのは,複素関数cos(z)の微分について調べているのに,IとIIでそれぞれcosh(y),sinh(y)の微分をしていることです. cosh(y)=cos(iy),isinh(y)=sin(iy) なので,これも複素関数の微分となり,ここでは使ってはいけないのではないのでしょうか? ほかの方法があれば教えてください.また, {cosh(y)}'=sinh(y),{sinh(y)}'=cosh(y) となる理由もよろしくお願いします. 複素関数論 複素関数論の質問です。 Z^5=32を解いて図を書けという問題なのですが解き方がいまいちわかりません。 多分すごく簡単なことなんでしょうが、教科書を見てもいまいちわかりませんでした。なにとぞお願いします。。 あと、複素関数論のことが丁寧に書いてあるHPとかないですかね?? 複素関数のローラン展開 次のローラン展開の問題の解き方が分かりません。 複素関数f(z)=(1-cosz)/z^2をz=0を中心にローラン展開せよ という問題です。 問題の途中経過まで書いてあると助かります。 どなたかお願いします。 複素関数について sin(z),cos(z)の値域は複素平面全体でよいのでしょうか?また,それはなぜでしょうか? よろしければ,簡単な証明を書いていただけるとありがたいです.よろしくおねがいします. 複素平面上の写像について 複素平面上の写像について わからないのでよろしくお願いいたします. 複素平面(z平面)上の領域 z:0<Rez<π,Imz>0 が 写像f(z)によって複素平面上のどのような領域に写されるか. f(z)=cos z よろしくお願いします 複素平面 複素平面上で次の方程式を満たす点zの描く図形を求めよ |z|=2|z-3i| 両辺を2乗してからどうするのですか? 詳しい解説お願いします。 ちなみに、参考書によると、答えは中心4i,半径2の円です。 複素関数でのロピタルの定理 「f(z),g(z)は複素変数の複素関数で、z=αを含む領域で正則。また、f(z)=0(z→α),g(z)=0(z→α)であるとする。このとき、f'(z)/g'(z) (z→α) が存在するならばf(z)/g(z) (z→α) = f'(z)/g'(z) (z→α) が成り立つか」 という問題を調べているのですが、なかなか見つかりません。要は実数値関数のロピタルの定理を複素関数に拡張できるかという問題なんですけど、どう証明すればいいのでしょうか。 複素関数の問題です。 複素関数の問題です。 zは複素数 ∫f(z)|dz|は何を求めているのでしょうか? 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
ありがとうございました。 今回の逆関数はzとyを入れ替えればいいということが分かって解くことができました。