ベストアンサー 対数微分 2001/07/09 12:00 量子力学のポテンシャルの中心で正則な動径波動関数の、半径での対数微分は何を意味しているのでしょうか? みんなの回答 (1) 専門家の回答 質問者が選んだベストアンサー ベストアンサー siegmund ベストアンサー率64% (701/1090) 2001/07/10 23:38 回答No.1 ポテンシャルの形が r=R で切り替わるとき, 波動関数を接続する条件として使われます. 質問者 お礼 2001/07/11 13:07 助かりました。本当にありがとうございました。 通報する ありがとう 0 カテゴリ 学問・教育自然科学物理学 関連するQ&A 量子力学の微分方程式の解 量子力学の微分方程式の解 動径方向の微分方程式は(1)のようにかける。 固有関数は(2)のようにかけるとき、 パラメータaとエネルギー固有値Eを求めよ。 この問題↑を解いたのですが、 答えは(3)のようになりました。 これであっているでしょうか? また、エネルギー固有値をどう求めればよいか分かりません。 どなたか教えていただけるとうれしいです。 対数微分法 高校生です。 参考書を読んでも理解できない点があったので質問させてください。 y = x / {(x+1)(x+2)^3} を微分せよ という問題なのですが、 解答例として 両辺の絶対値の自然対数をとる → 両辺をxで微分する という プロセスが示されているのですが、 (1)<絶対値>の対数をとって計算したのに、なぜその結果をもとの関数の導関数とすることができるのか。 (絶対値をとる意味) (2)x=0 が定義域に含まれているのに計算途中で log|x| を登場させていいのか。 (真数などの条件もおさえられているのか) などが、どうもいまいちピンときません。 (計算の仕方 つまり 対数法則や、合成関数の微分などは理解できています) どなたか説明をよろしくお願いいたします。 対数微分法 次の 関数を 対数微分法で 微分せよ √1-eのX乗 宜しくお願いします 対数微分法 √1-eの x乗 関数を 対数微分法で 微分せよ この 問題の 途中式と答えを 教えてください。 宜しくお願い致します。 量子力学において運動量を微分演算子に代える物理的意味 量子力学をきちんと物理的,数学的に理解したいので,独学で量子力学を勉強しています.学部時代は量子力学の授業がなかったこともあり,正直分からないことだらけで不思議に思うことがたくさんあります. そのうちの一つとして,ある原子内の電子群を考え,ハミルトニアンHを持つ系だとすると,波動関数Ψの絶対値の二乗(存在確率)で存在する原子内にある一つの電子は,あるエネルギ準位(固有値)εしか取り得ないという考え方をシュレディンガー方程式 HΨ=εΨ で表される固有値問題に帰着するということをとりあえず納得したとすると,線型代数学で出てくる固有値問題 Ax↑=λx↑ のように「ある固有ベクトルx↑に対してある固有値λが決まる」 ということと似ているのでなんとなく分かります. 波動方程式からシュレディンガー方程式を導出していくこともなんとなく分かりました.分からないことは,シュレディンガー方程式の導出として,ハミルトニアンを波動関数に作用させ,ハミルトニアン中に含まれる運動量を微分演算子に代えれば,シュレディンガー方程式になっているということです.この方法は,結果として成り立つだけで,後付けくさいなあと感じました. 過去にも同じような質問をされていた方 http://oshiete1.goo.ne.jp/qa587812.html がいましたので見てみると,運動量を微分演算子に代えるのは数学的には導けるようですが,その導く過程が物理的には分かりにくいと感じました. 量子力学を勉強する前に基礎知識が不十分なのもあるとおもいます. なので,量子力学を勉強する前に習得するべき学問は何かと,どの順番で勉強すれば効率がよいかも教えていただきたいです. (1)量子力学において,運動量を微分演算子に代えることの物理的意味は?もっと一般的に,その他の物理量(角運動量,スピン角運動量など)を演算子に代えることの物理的意味は? (2)量子力学を勉強する前に習得するべき学問は何かと,それらをどの順番で勉強すれば効率がよいか? です.長くなりましたが,よろしくお願いいたします. Dirac方程式について 質問1. Dirac方程式を量子化する前の式 ε/c=α1p1+α2p2+α2p3+βmc は、古典力学の式として、何か利用価値は無いのでしょうか? α1、α2、α2、β:行列 質問2. また、この式を量子化せずに形を波動方程式にすることができるように思われるのですが、 そのようにしても、古典力学の式として何か、利用価値は無いのでしょうか? 質問3. この場合、4つの式になりますので、波動関数を掛けないと答えは、出ないのでしょうか?とすると、やはり量子化しないと意味は無いのでしょうか? 質問4. 一般に波動方程式を解く際、微分方程式の本を見ると、変数分離とか何やらで、 しんきくさい解き方をしていますが、例えばDirac方程式の平面波の計算では、 波動関数を掛けて、固有値・固有ベクトルを一気に計算して求めます。 古典力学的な波動方程式や熱伝導微分方程式で、Dirac方程式のように 波動関数に近いものを掛けて、固有値・固有ベクトルを求めている 例はあるのでしょうか? 質問5. 微分方程式の本に載っている古典力学の計算「例えば変数分離を使って波動方程式を解いた例」を、時間がかかり非効率的になるかもしれませんが、Dirac方程式の平面波の計算のように、波動関数(あるいはそれに近いもの)を掛けて、固有値・固有ベクトルを計算して求めることは可能でしょうか。 量子力学の初歩的な問題です 量子力学の初歩的な問題です 1.調和振動子の固有エネルギーを記せ 2.いわゆる箱型ポテンシャルの固有波動関数を記せ という問題を出されて困っています。 参考になるページかできれば答えを教えてもらえないでしょうか 対数微分法について 例えばy=sinx^xなどという関数は両辺自然対数をとりますよね そのとき、左辺はlogyとなり 「両辺xについて微分したとき」左辺はy'/yとなりますが 「xについて微分なのになぜyがxの関数かのように微分されているのですか?」 考えられたことは、logyを微分したら、d(logy)/dy×(dy/dx)でlogy/dxと同じことになるので、d(logy)/dyは1/yですよね。ということは・・・?dy/dxはy'ということでしょうか?けどyっていうのはxという文字を含んでいませんよね・・・。 合成関数みたいな感じでしょうか・・・?合成関数って微分したら中身をさらに微分するけど・・・ y'ってやるとyの中身は・・・? などと混乱してしまいました。 アドバイスお願いします。 対数関数の微分 いつもお世話になっています。 微分のところを勉強していて x^n → n x^(n-1) sin(x) → cos(x) e^x → e^x などは導関数の定義から求めることができました。 しかし、教科書では対数関数の微分が log(x) → 1/x なることだけは 逆関数の微分を使って求めています。 そのやり方は納得できたのですが、 lim {log(x+h) - log(x)}/h から変形して求めることはできないのでしょうか? 波動関数のプサイとファイの違い 量子力学で波動関数をΨ(プサイ)やφ(ファイ)で表しますが、これらに物理学的な意味の違いはあるのでしょうか? また、どちらが正式なのでしょうか? 自然対数と合成関数の微分 自然対数が混ざった合成関数の微分なのですが、 Y=1/ln(x+2) という関数の一階導関数と二階導関数を求めたいのですがうまくいきません。 どうすればうまくいくのでしょうか? 対数尤度関数の偏微分に関する質問 対数尤度関数の微分に関する質問です。 問題でσ^2で偏微分して=0と置く問題があるのですが、 問題式の中に二乗のない単なるσがあるのですが、これは偏微分の対象になるのでしょうか?それとも定数と捉えるのでしょうか? 波動関数について 量子力学に関しての質問なのですが、「量子力学の波動関数はどのように解釈されるか」という質問が大学の講義で出たのですが、「波動関数は粒子の存在確率を表す確率波」という解答であっているでしょうか。よろしければ教えてくださいm(_ _)m 微分 y=x^(1/x)を微分しなさい。 これは、対数微分法でといてよいのでしょうか?? 対数微分法でとくにはxが1<xの関係でないとダメなんですよね?? 対数微分法でとけないのならば、普通に合成関数でといてよいのでしょうか?? 質問ぜめですみません。 固体中で原子核はトンネルしますか? 量子力学で波動関数といった時に、一つの電子に対して考えるのが通常(?)の量子力学ですが、陽子の波動関数というのもあるそうですね。 また2つの電子の波動関数は、個々の電子に関する波動関数のテンソルで表せましたが、それと同じ様に考えれば一つの原子核を対象とした波動関数は定義できる様に思えます。 なのでそのとき原子核の波動関数を支配する方程式はシュレーディンガー方程式であることに変わりはないということを考えました。 ここで質問したいことは、この議論は正しいのでしょうか?という点と、 またもしそうならば、金属などの固体中で原子核が電子の作るポテンシャルに対してトンネルすることもありうるのでしょうか??という点です。 これを定性的に考えると、原子核と電子との相互作用で電子よりも原子核のほうが「動きやすい」状況が必要だと思うのですが、この時の「動きやすさ」とは何なのでしょうか?電子がたくさんのバンド構造を持てば電子は「動きにくい」と考えてよいのでしょうか?また、そのような状況はありえますか? 部分的な回答で十分なので、どうかよろしくお願いします。 対数関数の微分 質問1 (a^x)'は公式よりa^xloga ですよね。 しかし、両辺の自然対数を取っても考えられると思い、 y=a^x と置くと、log[y]=xlog[a] 両辺をxで微分すると、 y'/y = (x)'log[a] + x(loga)' y' = y(log[a]+x/a) = a^x(log[a]+x/a) となり、先程の (a^x)'=a^xloga と一致しません。 何処が間違えてるのでしょうか。 質問2 今度は逆に、y=x^(1/x) を微分せよという問題で、 解答では両辺に自然対数をとってます。 しかし、僕は先程の公式と合成関数の微分法で解けると考え、 y'=1/xlog[x]・(1/x)' =1/xlog[x]・-x^(-2) となり、答えの(1-logx)/x^2 と一致しません。 何処が間違っているのでしょうか。 また、公式を使う場合と対数微分法を使う場合、 どのように使い分ければいいのでしょうか。 y=3^(2x-1) を微分せよという問題では 解答では公式を使って解いていて、 やはり対数微分法で解くと解が一致しません。 これでさっぱり混乱してしまいました。 量子力学2体問題 量子力学の陽子と中性子が核力によって結合している2粒子系の状態についてです。 全質量と換算質量の2つのシュレディンガー方程式をたて、その次に換算質量についてのシュレディンガー方程式を動径部分と角度部分に分け(R(r)とY(θφ))動径部分について考えます。R(r)=χ(r)/rとしてχ(r)の微分方程式を求めました。 次に核力を表すポテンシャルとしてV(r)=∞(r<a) -V。(a<r<c) 0(c<r) の斥力芯を持つ井戸型ポテンシャル(V。>0)でb=c-aとして束縛状態が基底状態であるとするときエネルギー固有値を求める関係式を求める問題なのですが、このときの基底状態とはR(r)とY(θφ)についての微分方程式=λ(=l(l+1))とするとl=0としていいのなぜですか?その理由がよくわからないです。 またこのときの規格化された波動関数とはχ(r)について解けばいいのですか? 解き方を教えて下さい。 自然対数eは何に使えるのですか?eが含まれている関数を微分することはで 自然対数eは何に使えるのですか?eが含まれている関数を微分することはできても、これが何に使えるのかわかりません、何に使えるのか教えてください。 対数微分法を使って次の関数の導関数をもとめよ。 対数微分法を使って次の関数の導関数をもとめよ。 y=x^(1/3)*(1-x)^(1/2)*(1+x)^(1/4) よろしくお願いします。 微分 積分 微分 積分 って量子力学で出てくるんですが、、、 さっぱり微積分は 分からないのでどなたか教えてくださいませんか? 中二がわかるくらい細かくお願いします… 注目のQ&A 「前置詞」が入った曲といえば? 緊急性のない救急車の利用は罪になるの? 助手席で寝ると怒る運転手 世界がEV車に全部切り替えてしまうなら ハズキルーペのCMって…。 全て黒の5色ペンが、欲しいです 長距離だったりしても 老人ホームが自分の住所になるのか? 彼氏と付き合って2日目で別れを告げられショックです 店長のチクチク言葉の対処法 カテゴリ 学問・教育 自然科学 理科(小学校・中学校)化学物理学科学生物学地学天文学・宇宙科学環境学・生態学その他(自然科学) カテゴリ一覧を見る あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど
お礼
助かりました。本当にありがとうございました。