円に内接する三角形の面積の最大値を求める(偏微分)
半径1の円に内接する三角形の面積の最大値を偏微分を利用して求める問題です。
△ABCにおいて、点Aの座標をA(1,0)、点Oの座標をO(0,0)とし、また、∠AOB=α、、∠AOC=β (ただし、0<α<β<2π) とおき、B(cosα , sinα)、C(cosβ , sinβ)としました。
△ABCの面積Sは、(途中の計算は省略させていただきます。以下も同じ)
S={ sinα - sinβ + sin(β-α) }
となりました。ここで、Sをα、βで偏微分すると、
dS/dα = sin(β/2)*sin{(β-2α)/2}
dS/dβ = sin(α/2)*sin{(2β-α)/2}
d(dS/dα)/dα = -sin(β/2)*cos{(β-2α)/2}
d(dS/dα)/dβ = {sin(β-α)}/2
d(dS/dβ)/dβ = sin(α/2)*cos{(2β-α)/2}
となり、
dS/dα = 0
dS/dβ = 0
を満たすα、βを求めると、
α = (2/3)π 、β = (4/3)π
となりました。
さらに、α = (2/3)π 、β = (4/3)π の時、
d(dS/dα)/dα = -(√3)/2
d(dS/dα)/dβ = (√3)/4
d(dS/dβ)/dβ = -(√3)/2
より、
{ d(dS/dα)/dβ }^2-{ d(dS/dα)/dα }*{ d(dS/dβ)/dβ } = -9/16 < 0
であるから、
Sはα = (2/3)π 、β = (4/3)π の時に極大値となり、S = 3(√3)/4
ここで、Sがα = (2/3)π 、β = (4/3)π の時に極大値 3(√3)/4をとるが、最大値となるか確かめるために、
『α = (2/3)π とした時のβに対するSの増減及びβ = (4/3)π とした時のαに対するSの増減を考える』
ために、増減表を作成し求めていきました。
しかしながら、
『「α = (2/3)π とした時のβに対するSの増減及びβ = (4/3)π とした時のαに対するSの増減を考える」ことで、なぜ極大値が最大値と分かるのか根拠を述べよ』
とご指摘いただき、これに対してどのように答えれば良いのか分からず、困っておるところです。
どなたかアドバイスいただければと思います。よろしくお願い致します。