ベストアンサー 数学の課題について 三角比 2014/12/24 19:50 ∠A=90度の直角三角形ABCの頂点Aから、斜辺BCに垂線ADを下ろす。∠ABC=θ、BC=aであるとき、線分の長さをa、θを用いて表せ。という問題で、ACが求められません。どなたか解き方を教えください!! みんなの回答 (1) 専門家の回答 質問者が選んだベストアンサー ベストアンサー yyssaa ベストアンサー率50% (747/1465) 2014/12/24 20:41 回答No.1 >△ABCの面積=(1/2)AB*AC=(1/2)BC*AD=(1/2)*a*ABsinθ AC=a*sinθ・・・答 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 数学の問題で質問があります。 数学の、この問題の解き方を できるだけ分かりやすく教えてください!! お願いします(>_<) ∠A=90°の直角三角形ABCの頂点Aから 斜辺BCに垂線ADを下ろす。 ∠ABC=θ、BC=αであるとき、 次の線分の長さをα、θを用いて表せ。 (1)、AB (2)、AD (3)、CD 数学Iで分からない問題があります 角C=90度である直角三角形ABCにおいて、角A=θ、AB=aとする。 頂点Cから辺ABに下ろした垂線をCDとするとき、次の線分の長さをa、θを用いて表せ。 (1)BC (2)AC (3)AD (4)CD (5)BD この問題が分かりません。 どなたか詳しく解説していただけないでしょうか?お願いします。 三角比の問題です ∠A=90°、AB>ACの直角三角形において 頂点Aから辺BCに下ろした垂線をADとし ∠ABCの大きさをθとする。 BC=13、AD=6であるとき、次のものを求めよ。 (1)BD,CDの長さ (2)cosθの値 教科書の練習問題で、答えがBD=9、CD=4と あるだけで、途中経過が全くわかりません(。>0<。) 5時間考えましたが分からないので教えて下さい。 ちなみに正弦定理や余弦定理を使わない解法を お願いします。(まだ勉強してないので) 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 三角比を使えば良いでしょうか。 三角形ABCにおいて、AB=6・AC=3・∠A=120°である。 ・∠Aの二等分線が、辺BCと交わる点をDとすると、AD=いくつか? ・頂点Aより辺BCに下ろした垂線の足をHとすると、AH=いくつか? という問題があります。 三角比を使って解いてみたのですが、思うように解けません。 私のやり方が悪いのか。 またやり方自体がちがうのか。 どなたか、教えていただけませんでしょうか。 宜しくおねがいします。 高校数学・三角比 今朝ほど問題を投稿した者です。図を記入していませんですみません。 (2)図の△ABCはAB=AC、BC=4の直角二等辺三角形である。線分BDとADの長さを求めよ。 高校数学・三角比の問題です。 (1)角B=90°、BC=3、CA=4の△ABCにおいて、角Aの大きさをaとする。 sin a、cos a、tan aの値を求めよ。 (2)図の△ABCはAB=AC、BC=4の直角二等辺三角形である。線分BDとADの長さを求めよ。 数学 三角比 三角形ABCにおいて、頂点Aから直線BCに垂直におろした垂線の長さは1、頂点Bから直線CAに下した垂線の長さは√2、頂点Cから直線ABに下した垂線の長さは2である。このとき、三角形ABCの面積と、内接円の半径、および外接円の半径を求めよ。 数学の三角比の問題です。 AB=3、∠A=60°の△ABCがあり、△ABCの外接円の半径は√39/3である。 (1)辺BCの長さを求めよ。 (2)辺ACの長さを求めよ。また、tanBの値を求めよ。 (3)直線BC上に∠BAD=90°になるように点Dをとる。線分ADの長さを求めよ。 また、線分ACを折り目として、△ACDを折り曲げ、平面ABCと平面ACDが垂直になるようにする。 折り曲げた後の点Dに対して、線分BDの長さを求めよ。 宜しくお願いします。 大至急 三角比・三角関数の問題 大至急 三角比・三角関数の問題 学校のテキストで分からない問題があります もしよければ途中式を教えてください 1△ABCにおいて、AB=6 BC=7 CA=8とし、∠BACの2等分線が辺BCと交わる点をDとする。 (1)cos∠ABCの値を求めよ (2)△ABCの外接円の半径および△ABCの面積を求めよ (3)線分BD、CD、ADの長さを求めよ (4)△ABD,△ACDの内接円の半径をそれぞれr1、r2とするとき、その比を求めよ 2半径1の円に内接し、∠A=60°である△ABCについて (1)BCの長さを求めよ (2)3辺の長さの和AB+BC+CAの最大値を求めよ 3鋭角三角形ABCにおいて、AB=5、AC=4で、△ABCの面積が8である (1)sinA,cosAの値を求めよ (2)△ABCの外接円の半径を求めよ (3)△ABCの内接円の半径を求めよ 4AB=1、AC=√3、∠A=90°の直角三角形ABCがある。頂点A以外と共有点をもたない直線をlとし、2点BCから直線 lにおろした垂線の足をD、Eとする。 直線lをいろいろとるとき、4角形BCEDの周の長さLの最大値を求めよ よろしくお願いしますm(_ _)m 三角比? △ABCにおいて,AB=√8 ∠A=15゜,∠B=45゜である いま,点Aから直線BCに下ろした 垂線の足をHとする (1)垂線AHの長さ (2)線分BHの長さ (3)線分CHの長さ (4)辺BCの長さ (5)△ABCの面積 (1)は2(2)も2と求める ことが出来たのですが (3)が求めれません(T^T) 誰かお願いします!! 三角比 半径3の円に内接する三角形ABCがあり、AB=5,AC=2とする。 このとき辺BCの長さを求める問題 コンパスで作図する方法はわかったのですが、点Aから直線BCに垂線を下ろし、その交点をIとする図がよくわかりません。 コンパスで作図する図と違うのですが、この図はどのような考えて表されているのですか? それから、なぜLBは鋭角といえるのでしょうか? 図をみればそれはわかるのですが、理論上どのように求めるかわかりません。 AC>5はなぜ純角といえるのですか? そして、なぜ直角だと純角といえるのですか? おしえてください。 正四面体に引いた垂線の長さの比 を求めよ。 正四面体ABCD があり、一辺の長さは6である。辺 BC の中点をM、頂点A から線分MD に引いた垂線をAH とする。 線分 MH と HD の長さの比は、□:□ であることが分かる。 ・・という問題です。 解答は、√3:2√3 = 1:2 となっていますが、なぜそうなるのでしょうか? 私は、正四面体とあり、頂点A から垂線を・・とあるので、H は直角で、MH もHD も同じ長さ(1:1)と考えてしまいます。また、1:2になるならばH は直角にはならないように思うのですが、理解できず悩んでいます。 どうか回答をお願い致します。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 三角比 AB=7,BC=5,CA=8の△ABCがある。 辺BCのC側の延長線上に点DをAB:AD=BC:CDとなるようにとる。線分CDの長さを求めよ。 AB:AD=BC:BDになるのはACが∠BADの二等分線になるとき。CD=xとおくとAD=7x/5 ここまでしかわかりません。どうすれば、この問題が解けるか教えてください。 鋭角の三角比について 「直角三角形ABCにおいて斜辺AB=6,底辺AC=x,辺BC=4の時 sinA,cosA,tanAの値を求めよ」という問題は、底辺AC=2√5 sinA=2/3 cosA=√5/3 tanA=2/√5 でいいのでしょうか?また、sin,cos,tanが三角形の何処を意味するのか良くつかめません。わかりやすく教えて下さい。 数学 三角形ABCにおいて∠A>90°、BC=1とする。頂点Bから直線ACに垂線を下ろし、直線ACとの交点をDとする。また、頂点Cから直線ABに垂線を下ろし、直線ABとの交点をEとする。直線DEに頂点B,Cから垂線を下ろし、直線DEとの交点をそれぞれP、Qとする。∠ABC=α、∠ACB=βとおく。 (1)線分BP,EQの長さをα、βを用いてあらわせ。 (2)∠BAC=135°のとき、四角形PBCQの面積Sの最大値を求めよ。 とき方のヒントを教えてください! 数学 ∠Cを直角とする直角三角形ABCの斜辺AB上(ただし2点、A,Bをのぞく)に点Dをとり、Dから辺BC,CAに引いた垂線の足を、それぞれE,Fとする。BC=6、CA=4のとき、三角形ADFと三角形DBEの面積の和が最小になるような線分AFの長さを求めよ。 AF=x FC=4-x と考えてとくはずなのですが、この後からがよく分かりません。 範囲は、二次関数の最大値、最小値です。 どなたか教えてください。 この数学の答えあってます?? ∠C=90°である直角三角形ABCにおいて、∠A=Θ、AB=aとする。 頂点Cから辺ABに下ろした垂線CDとするとき、次の線分の長さa,Θを用いて表せ。 辺BDを表せ。 僕はADをまずcos^2Θaと表せるので辺ABから引けばよいのでa-cos^2Θa と表しました。 これも一応、a,Θを用いて表していることになるんでしょうか???(因みに解説の解き方は別だったんですがそれは理解できました) 三角比の問題がわかりません AB=13,BC=15,CA=8の△ABCにおいて、点Aから辺BCに垂線ADを引く、このとき、次の値を求めよ。 (1) BDの長さ 答えは分かるのですが、解き方が分かりません。 三角比 AB=5,BC=4,CA=3の直角三角形ABCにおいて、∠Aの二等分線と辺BCの交点をDとする。 問、CDの長さを求めよ。 私が思うに,二等分線でAB:AC=5:3だからBD:CD=5:3になりますよね? このときBC=4なので4*3/8で答えは3/2となりました。 なのに模範解答は(√3)/2となっています。 なんでですか?直角三角形だから考え方がちがうんですか? わかる方、ぜひ解き方を教えてください。 お願いします。 エクセルで三角形の角度 教えて頂けますでしょうか。 直角三角形でABCにおいて 底辺=AB、斜辺=AC 垂線=BCの場合 斜辺ACは常に同じ長さで、高さBCが変更され 斜辺AC、高さBCの値が把握出来る時 角度CABを求めたいのですが 関数の使いかたがよくわかりません。 どのような関数を使用すればよろしいのでしょうか。 最終的には、○○(°)という形で表示したいのですが。。。 よろしくお願いいたします。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など