• ベストアンサー

和訳をお願いします。

The normalized Hill’s equations of the relative motion are described as (for definitions of coordinates, see PaperI) x’’=2y’+3x-3x/r^3, y’’=-2x’-3y/r^3, z’’=-z-3z/r^3, (6) where time is normalized by the Keplerian period Ω^-1 and length by the Hill radius ha_0*. よろしくお願いします。

質問者が選んだベストアンサー

  • ベストアンサー
  • bakansky
  • ベストアンサー率48% (3502/7245)
回答No.1

 相対運動のヒルの方程式を正規化すると下記のようになる (座標に関する詳細は論文Iを参照されたし)。    x’’=2y’+3x-3x/r^3,    y’’=-2x’-3y/r^3,    z’’=-z-3z/r^3, (6)  この式では時間は Ω^-1 というケプラーの軌道周期によって、また長さはヒルの半径 ha_0* によって正規化されている。

mamomo3
質問者

お礼

上手な和訳をしていただき、ありがとうございました。

その他の回答 (1)

  • ddeana
  • ベストアンサー率74% (2976/4019)
回答No.2

正規化されたヒルの相対運動方程式は下記とされている(座標の定義については第一論文を参照のこと) x’’=2y’+3x-3x/r^3, y’’=-2x’-3y/r^3, z’’=-z-3z/r^3, (6) ここでは、時間はケプラーの起動周期、Ω^-1により、そして長さは、ヒル半径、ha_0*bにより正規化されている。

mamomo3
質問者

お礼

ご回答どうもありがとうございました。