締切済み 数学に関する質問です 2013/07/10 23:56 数学に関する質問です。 ・全射 ・単射 ・全単射 について詳しく教えてください。 よろしくお願いいたします。 みんなの回答 (2) 専門家の回答 みんなの回答 funoe ベストアンサー率46% (222/475) 2013/07/11 09:52 回答No.2 全射: こちらの兵隊が一斉射撃すると、敵を全滅させることができる。 単射: こちらの兵隊が一斉射撃したあと調べると、敵兵の死体に弾は1発だけあたっている。一発必中。 こちらの兵隊は2人以上で1人を狙うような無駄弾を撃たない。 味方より敵が多いと相手を全滅させることができない。 全単射: 一斉射撃の1人1殺で敵を全滅させる。敵味方で同数の兵隊がいたことになる。 質問者 お礼 2013/07/13 12:07 わかりやすい例ありがとうございます。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 おみみ こみみ(@dreamhope-ok) ベストアンサー率26% (147/561) 2013/07/11 02:13 回答No.1 http://d.hatena.ne.jp/Zellij/20130206/p1 これが比較的わかりやすい。 質問者 お礼 2013/07/13 12:06 ありがとうございます。 参考になりました。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 大学の数学のことで質問です(ってか問題解けません><;;) 問題 f:A→B g:B→Cとする。次の命題のうち正しいものは証明し、正しくないものには反例を挙げよ。 (1)f、gが単射であれば、g○fも単射である。 (2)f、gが全射であれば、g○fも全射である。 (3)g○fが単射であれば、gも単射である。 (4)g○fが単射であれば、fも単射である。 (5)g○fが全射であれば、gも全射である。 (6)g○fが全射であれば、fも全射である。 (7)f、gが全単射なら、g○fも全単射で(g○f)の-1=fの-1○gの-1 (8)g○fが単射であり、さらにfが全射ならgは単射 (9)g○fが全射であり、ららにgが単射ならfは全射 ただしA,BCは集合を表します の-1っていうのはインバースのことでfの-1の場合 fの右上に小さく-1を書こうとしたのですがPCでは入力できない・・!?みたいな感じだったので やむなく [の-1] と書きました(・・;) 大学数学 全射と単射 次の問いが正しければ証明し、間違っていれば凡例をあげよ。 (1)fが単射ならばg○fは単射 (2)gが全射ならばg○fは全射 (3)fが単射、gが全射ならばg○fは全単射 という問題についてなのですが、 例えば(1)はgが全射か単射かによって場合分けをして考えるのでしょうか。 g,fともに全射ならばg○fは全射 g,fともに単射ならばg○fは単射 ということは証明できたのですが、g,fの片方が全射でもう片方が単射の場合の証明方法がわかりません。 また「凡例をあげる」というのは、どのように書けば良いのでしょうか?具体的な関数(y=x^2等)を書けということなのですか? ヒントやアドバイスでも良いので、どなたか回答をお願いいたします。 縮小写像について質問です フラクタル数学という本を読んでいたら縮小写像が出てきたのですが、縮小写像の性質で逆写像を持つというのがありました。 逆写像が存在するということは写像が全単射であると思ったので、全単射の証明をしようとしたのですが、単射であることは示せても全射であることを証明することができません。 どのようにして証明すればいいのでしょうか? わかる方、ヒントでもいいので教えてください(>_<) よろしくお願いします。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 写像に関する問題で単射、全射、全単射を選ぶ問題についての質問です 大学の問題で、 関数f,g:N→Nを以下のように定義する。 f(n) = 3n, g(n) = [n/3]+1 ※[ ]は床関数を表す fとgの合成gfが満たす性質を選べ。 (A)単射でも全射でもない(B)単射だが全射ではない (C)全射だが単射ではない(D)全単射である という問題なのですが、gfが1となる元が存在しないので(B)の単射だが全射ではないと思うのですが、回答を見たら(D)の全単射でした。なぜ全射になるのか分らないのですが、教えていただけないでしょうか。 よろしくお願いします。 合成問題の証明教えてください(><) 背理法を使ってみたんですがよくわかりませんでした。 写像f:A→B,g:B→Cとその合成写像g。fについて示せ。 1 f,gともに全単射であればg。fはまた全単射である。またこのとき(g。f)^-1=f^-1。g^-1である。 2 g。fが全単射ならばgは全射である。もしこのとき、さらにgが単射でもあれば、fは全射である。 3 g。fが単射ならば、fは単射である。もしこのとき、さらにfが全射でもあれば、gは単射である。 わかる方よろしくお願いします。 関数について 全射と単射、全単射の はっきりとした意味が いまいちわかりません。 教科書は書いてあることが 難しくって…(;´Д`) よろしくお願いします<(_ _)> 基本的な事ですが…(単射、全射、onto…) 単射、全射、全単射、onto、1対1。 これらの意味を教えてください。 きっと同じ事を言っているのもあるとは思いますが。 集合 位相 について (数学) 教えてください 位相数学についてです f:A → B g:B→C とするとき g ο f が全射ならば gは全射 g ο f が単射ならば fは単射 であることを示せ なかなか位相について自分で掴むことができず 簡単な証明でも分からなくて困っています 教えていただきたいです。 合同変換の全単射性 合同変換が全単射であることを示せ という問題なのですが、証明がわかりません。 全射性、単射性とそれぞれ教えてくださると助かります。 証明していただけるとすごく嬉しいです。 よろしくお願いします。 f:X→Y, g:Y→Xを集合Xと集合Yの間の写像 f:X→Y, g:Y→Xを集合Xと集合Yの間の写像とし、g⚪︎f:X→X、f⚪︎g:Y→Yをそれらの写像の合成写像とする。次の記述1から5について、 1:gが全射ならば、g⚪︎fは全射である。 2:g⚪︎fが全射ならば、fは全射である。 3:g⚪︎fが単射ならば、gは単射である。 4:Yが有限集合で、g⚪︎fとf⚪︎gが全射ならば、fは全単射である。 5:f⚪︎gが全単射ならば、g⚪︎fは全単射である。 常に正しいのは4であるそうですが、その理由がわかりません。どなたか教えて下さいませんか。 情報数学 「写像f:X→Yに対して、写像g:2^X→2^Yをg(A)=f(A) (A⊂X)と定める。 以下の命題に関して常に成り立つたらば証明を与え、そうでないなら反例をあげよ ・fが単射ならばgは単射である ・gが単射ならばfは単射である ・fが全射ならばgは全射である ・gが全射ならばfは全射である」 という問題がわかりません! 面倒かと思いますが、解説よろしくお願いします 線形代数 全射 単射 全単射 行列の線形写像について 全射は行基本変形をすれば単位行列になり判別するみたいなのですが、ほかの単射や全単射は どのような判別の仕方をすればいいのでしょうか。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 大学数学の問題です 次の問題の答えを教えてください。解き方はお時間があればでいいです f:A→Bとする。このとき、次の(f、A、B)は全射・単射・全単射・どれでもない・のうちどれか?また、関数でない 場合は関数でないと答えよ (1) (log x, [-1,1], [0,∞)) (2) (e^x, (0,1), (-e,e)) (3) (x^2, [-1,1], (-∞,∞)) (4) (\sqrt{x}, [0,2], [0,1]) ※(4)はルートxです 離散数学の証明 1.関数f:A->Bが可逆であるのは、fが全射でかつ単射な関数であるときに限ること。 2.有限集合A上の関数f:A->Aに関して、fが単射であるための必要十分条件はfが全射であること。 の、どちらかの証明を教えてください。 全射とは、上への関数 単射とは、1対1関数のことです。 写像の問題です。よろしくお願いします。 (1)2つの写像f:X→Y、g:Y→Zがある。g・fが全射ならばgは全射であるとする。ここでさらにgが単射であると仮定すればfも全射となることを証明せよ。 (2)自然数Nと零を合わせた集合N∪{0}から整数の集合Zへの写像で、全単射となるものを構成し、その理由を説明せよ。 代数の基礎で、写像についてイマイチ理解できなく困っています。 代数の基礎で、写像についてイマイチ理解できなく困っています。 X={4,7},Y={3,5,8}のときX→Yの写像をすべて挙げ、また挙げた中から全射、単射、全単射を抜き出せ。 という問題があったとします。 教科書、参考書を見てもイマイチ理解できません。 どなたか解り易く解説していただけませんか? 数学 集合と写像の問題 回答・解説お願いします。 数学 集合と写像の 過去問ですが、回答がないので困っています。 よろしくお願いします! 前回質問させていただきましたが、問題に打ち間違えがありましたので再度修正して 質問いたします。 ミスをご指摘いただいた方ありがとうございました。 X={3,4,5} Y={5,6,}とする。 (1) YからXへの単射を1つ求めよ。 (2) XからYへの全射を1つ求めよ。 (3) (1)(2)で求めた写像の合成写像を求めよ。 (4) XからXへの写像で全射であるものを全て求めよ。 (5) (4)で求めた写像 f で合成写像 f2=f○fが恒等写像となるものを全て求めよ。 (6) YからYへの写像で単射であるものを全て求めよ。 (7) (6)で求めた写像 f で合成写像 f3=f○f○fが恒等写像となるものをすべて求めよ。 数学が うまく変換出来ませんでしたので、わかりにくいと思いますが、よろしくお願いいたします。 全単射の数 f:{1,2,3,4,5}→{1,2}でできる写像のうち、全単射の数を求めよという問題で、 写像の総数2^5=32。そのうち全射にならないものは、全て1に行く写像と全て2に行く写像の2つ。よって32-2=30が全単射の数と本に書かれていました。 自分は集合{1,2,3,4,5}が集合{1,2}に対応させられると、対応先がどうしても被るので単射になる写像が0で、全単射も0だと思いました。 本の正誤表はインターネットで調べても出てこなかったので、本が正解だと思うのですが、どなたかこの問題の解説をしてくださいお願いします。 写像の証明問題です。よろしくお願いします。 写像の問題です。よろしくお願いします。 (1)2つの写像f:X→Y、f:Y→Zがある。g・fが全射ならばgは全射であるとする。ここでさらにgが単射であると仮定すればfも全射となることを証明せよ。 (2)自然数Nと零を合わせた集合N∪{0}から整数の集合Zへの写像で、全単射となるものを構成し、その理由を説明せよ。 写像について 写像について (1)(-1,1)を(-∞,∞)に全単射する写像の例を一つ挙げよ。あげた写像が全単射といえる理由も述べよ。 (2)f:R^2→R^2,f(x,y)=(x+y,xy)とするときf(D)を求め図示せよ。 D={(x,y)|x^2+y^2<1,x>0,y≦0} の二問の解答への方向性が見えません。 全射、単射についての定義はわっかていますが・・・。 よろしくお願いいたします。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
わかりやすい例ありがとうございます。