ベストアンサー 数学の問題の解説お願いします。 2012/04/17 22:48 座標平面上で点(0,2)を中心とする半径1の円をCとする。 Cに外接しx軸に接する円の中心P(a,b)が描く図形の方程式を求めよ。 解答 y=1/6x^2+1/2 解説をよろしくお願いします。 みんなの回答 (1) 専門家の回答 質問者が選んだベストアンサー ベストアンサー gohtraw ベストアンサー率54% (1630/2965) 2012/04/17 22:58 回答No.1 求める円はx軸に接しているので、その半径はbです。また、点(0,2)と点Pの距離は二つの円の半径の和に等しいのでb+1です。このことより a^2+(b-2)^2=(b+1)^2 これを展開して整理し、a⇒x、b⇒yと置き換えれば終了です。 質問者 お礼 2012/04/18 20:41 ありがとうございます! 助かりました。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 軌跡の問題について 軌跡と領域の問題の質問です。 (1)座標平面上で点(0,2)を中心とする半径1の円をCとする。Cに外接しx軸に接する円の中心(a、b)が描く図形の方程式を求めよ。 (2)x^2+y^2-4x-2y+3≦0かつx+3y-3≧0の領域でx+yのとりうる値の範囲をもとめよ。 よろしくお願いします。 数学の問題です この問題がわかりません(´-ε-`;) 座標平面上の円C:x^2+y^2=9と直線l:y=-2x+3を考える。 tを実数とし、直線l上に点P(t,-2t+3)をとる。 (1)点Q(u,v)が円C上を動くときの線分PQの中点Mの軌跡C'を考える。ただし、もし2点P,Qが一致するならば、その一致する点をMとする。こうして得られるC'は円となる。C'の半径の値を求め、中心の座標をtの式で表せ。 (2)点Pが直線l上を動くとき、(1)で得られたC'の中心の軌跡の方程式を求めよ。 (3)円C'と(1)で得られた円C'が外接するときのtの値を求めよ。 答えは (1)半径3/2、中心(t/2,-2t+3/2) (2)y=-2t+3/2 (3)t=6±6ルート11/5です。 数学の問題です xy座標平面上の原点をO、座標が(6,0)、(6,8)である点をそれぞれA、Bとする。このとき、△OABの外接円、内接円の方程式を求めよ。 外接円はx^2+y^2-6x-8=0だと分かったんですけど内接円が分かりません。解説と回答おねがいします。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 数学の問題の解説お願いします。 シニア数学演習 184 Pをxy平面上の点とし、円C:x^2+y^2=1と直線 l :y=-2を考える。 円C上の点Qに対し、PQの最小値をd1,Pから直線lまでの距離をd2とし、 d1=d2が成り立つとする。 (1)P(x,y)の軌跡の方程式を求めよ。 (2)Pから円Cに2本の接線を引いたときの接点をA、Bとする。 ∠APB=60°となるときのPの座標を求めよ。 解答 (1)y=1/6x^2-3/2 (2)(±√3,-1) 解法をよろしくお願いします。 円と方程式の問題です。 円と方程式の問題ですが、明日の数学の時間の板書に当たってしまいましたので、どうか教えてください!!自分なりの回答はできていますので、答えだけでもいいです。 中心が点P、半径rの円は次の条件を満たしています。 (a)二つの円 C1 : x^2+y^2=1, C2 : x^2+y^2-6x+ 5=0 と外接する。 (b)Pと原点Oを結ぶ直線とx軸の正方向とのなす角が60°。 このときの、円Cの半径と中心P の座標を求めるという問題なのですが・・・。 ヒントでも何でもいいので、お願いします!! 数学、図形と方程式 問、平面内に2点P(2,0), Q(0,4)をとり2点P,Qを通る円を考える。この円の中心Cのx座標をmとする。 (1)このときCの座標は(m, 1/2m+3/2) (解)線分PQの方程式はy=-2x+4。線分PQの垂直二等分線の方程式はy=1/2x+3/2となり円Cの中心は y=1/2x+3/2上に存在するので。 次の問に疑問点があります。 (2)m=□のとき円はy軸に接し、その円の方程式は(x-□)^2+(y-□)^2=□□である。 という問題なのですが、 最初の m=□を求める際に解答は、下記のようなんですが、 (解)円Cがy軸に接するつまり、Q(0,4)を接する円となる。よって、(Cの中心のy座標)=4となる。 1/2m+3/2=4→m=5となる。 1/2m+3/2=4 ←これが理解できないです。 数学です。 数学です。 1 点(-2・2)をとおり、中心が直線y=-x+2上にあり、x軸に接する円の方程式を求めよ。 2 3点A(0・0)、B(1・-2)、C(2・1)がある。三角形ABCの外心の座標と外接円の半径を求めよ。 という問題があります。 どちらも解き方の検討が付きません。 教科書やワークも見ましたがこのような問題は載っていせんでした。 (同じような系統の問題が載っていたので同じようにやって見ましたが途中からやり方が異なるようなので結局解けませんでした。) どなたか途中式と詳しい解説を教えてください。よろしくお願いします。 ※宿題ではありません 高校数学の問題なのですが… 球面(x+5)の2乗+(y-3)の2乗+(z-12)の2乗=13の2乗 とxy平面が交わる部分は円になる。 その中心の座標と半径を求める。 という問題の途中式あるいは解説を教えて下さい。出来れば詳しく…。 答えが中心の座標は(-5,3,0)で半径は5になるようです。 解答よろしくお願いします。 直線の問題 Oを原点とする座標平面において、方程式x^2+y^2=4で表される円をCとする。点A(6,0)を通り、円Cに接する傾きが負の直線をlとし、その接点をPとする。 (1)直線lの方程式とPの座標を求めよ。 (2)x軸の正の部分に中心O1をもち、lに接し、かつCに外接する円をC1とする。また、線分PO1とC1の交点をBとする。C1の方程式とBの座標を求めよ。 (3)三角形OO1Bの外接円は原点を通る円である。その方程式を求めよ。 (1)は、接線の方程式を使うと答えと合いません。どうすればいいんですか?公式とかありますか? また(2)(3)も、いまいち理解できないのですが、図を描いてみるべきでしょうか? どのような方法が簡単に求められるのか教えて下さい。解き方のヒントをお願いします。 数学の問題です 図形と方程式の問題です 分からないので教えてください... 1 xy座標平面上の原点をO,座標が(6,0),(6,8)である点をそれぞれA,Bとする。このとき、△OABの外接円、内接円の方程式を求めよ。 2 円x^2+y^2=24と直線3x+4y=10の2交点をP,Qとするとき、線分PQの長さを求めよ。 3 点(4,2)を通り、円x^2+y^2=2に接する直線の方程式を求めよ。 4 2つの円x^2+y^2+4x-6y+9=0,x^2+y^2+2x-4y=0の2つの交点を通る直線の方程式を求めよ。 5 円x^2+y^2=9と円x^2+(y+a)^2=9が共有点を持つような定数aの値の範囲は(ア)≦a≦(イ)である。 多くて申し訳ありませんが、お願いします 数学の問題です! 媒介変数tにより表示された曲線C:x=(cost)^3、y=(sint)^3、(0≦t≦π/2)上に点P((cosθ)^3、(sinθ)^3)をとる。0<θ<π/2のとき、PにおけるCの接線をlとし、θ=0、π/2のときはそれぞれx軸、y軸をlと定める。このとき、次の問いに答えよ。 (1)0<θ<π/2のとき、lの方程式を求めよ。 (2)0≦θ≦π/2のとき、Pにおいてlに接する半径2の円の中心のうち、第1象限にある点をQとする。Qの座標を求めよ。 (3)PがC上を動くとき、Qの描く曲線の長さを求めよ。 よろしくお願いします>< 数学IIIの問題 平面上の曲線に関する問題です。助けてください、解説もお願いします 次の放物線の方程式 (1) 焦点(1,0) 準線 x=-1 (2)焦点(0,-2) 準線 y=2 次の放物線の焦点の座標と準線の方程式 (1)y^2=5x (2)y+4x^2=0 次の楕円の焦点の座標 (1) x^2/25 + y^2/9 =1 (2)4x^2 + 3y^2 =12 楕円9x^2 +16y^2 =144をx軸方向に2, y軸方向に -3,だけ平行移動して得られる図形の方程式 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 数学です。 数学です。 1 点(-2・2)をとおり、中心が直線y=-x+2上にあり、x軸に接する円の方程式を求めよ。 2 3点A(0・0)、B(1・-2)、C(2・1)がある。三角形ABCの外心の座標と外接円の半径を求めよ。 という問題があります。 どちらも解き方の見当が付きません。 教科書やワークも見ましたがこのような問題は載っていせんでした。(勿論自分で解こうとしましたし、考えました) どなたか途中式と詳しい解説を教えてください。よろしくお願いします。 ※ヒントはワークなどから大体の推測はつくので詳しい途中式を教えてください。 (これでわからないとは情けないのですが) ※宿題ではありません 数学の質問です。 Oを原点とする座標平面上に円C1:x二乗+y二乗-12x-16y+96=0がある。 (1)円C1の中心の座標と半径を求めよ。 (2)円C1の中心をAとする。また、次の[1]~[3]の全ての条件を満たす円をC2とする。 [1]中心が線分OA上にある。 [2]半径が3である。 [3]円C1と外接する。 このとき、円C2の方程式を求めよ。 (3) (2)のとき、円C2の周および内部のうち、直線OAの下側(直線OA上の点を含む)の部分をDとする。点(x.y)が領域Dを動くとき、y-mxの最大値をmを用いて表せ。ただし、mは正の定数とする。 円の接線の問題です 円の接線の問題です。 教科書に載っていた問題で、答えが掲載されていなかったので、途中経過も含めて正答を教えていただけると嬉しいです。 以下問題です O を原点とする座標平面において, 方程式x^2+y^2=4で表される円をCとする。点 A(6, 0) を通り, 円Cに接する傾きが負の直線をLとし,その接点をPとする。このとき,次の[ ]に適当な値を入れよ。 (1) 直線Lの方程式は, x+[ ]y-[ ]= 0 であり, Pの座標は([ ],[ ])である。 (2) x軸上の正の部分に中心O1をもち, Lに接し,かつCに外接する円をC1とする。また、線分 PO1と C1の交点をBとする。C1の方程式は(x-[ ])^2+y^2=[ ]であり,Bの座標は([ ],[ ])である。 以上です、よろしくお願いします。 数学の問題です。教えてください! Oを原点とする座標平面上に、半径がすべてrである(rは正の定数)である 3つの円C1,C2,C3がある。円C1,C2の中心はそれぞれO、A(-6、8)である。 また円C3は2つの円C1,C2に外接し、その中心Bは第一象限にある。 (1)円C1、C2が2点L、Mで交わり、LM=5であるときrの値と点Bの座標を求めよ。 (2)(1)のとき円C3の周上に動点Pをとる。 OPの二乗+APの二乗の最小値を求めよ。 外接している場合、どうやって求めればいいのでしょうか。 解き方と考え方が分かりません。 詳しい解説をよろしくお願いします! 数学 xy平面上に点(2、4)を中心とする半径5の円があり、Cとx軸の交点のうち、x座標の小さいほうをBとする。 (1)Cの方程式とBを求めよ (2)直線y=-x+kがCと異なるようなkの値の範囲を求めよ (3) (2)において、Cと直線y=-x+kの2つの交点をP,Qとすると、∠PBQ=60°である。 (1)kの値を求めよ (2)三角形の面積を求めよ 最初の(1)は簡単に出ました。(2)は、6-5√2<k<5√2+6とへんな答えになり、(3)は分かりませんでした。PQの長さとか求めてみたりとかしてました・・・ よろしくお願いします。 数学の問題の解説お願いします。 シニア数学演習 292 座標空間において、頂点を中心とする半径が3の球面S上の点A(3,0,0)、B(0,3,0)、C(-1,2,2)を考える。 (1)線分AB,BC,CAの長さを求めよ。 (2)△ABCはどのような三角形であるか。 (3)3点A,B,Cを通る平面とSが交わってできる円の半径と中心の座標を求めよ。 解答 (1)AB=3√2、BC=√6、CA=2√6 (2)∠B=90゜の直角三角形 (3)半径√6、中心(1,1,1) 解答は受け取っていますが、 解法が分からないので、 説明をよろしくお願いします。 数学の問題で、解き方が解らなかった問題です 以下の問題になります。 x^2+y^2=x+y を満たす。この時、 2 x+yのとりうる値の範囲を求めよ 3 y-x^2+xのとりうる値の範囲を求めよ 座標平面上で、中心が(1/2,1/2)、半径が√2/2 の円になることはわかるのですが、上記の二問が解らないです。お忙しい中、申し訳ありませんが、解説をお願いいたします。 中学数学 図形の問題です 下の図の座標平面上で、原点をO、直線y=4/3x+12とx軸、y軸との交点をA、Bとし、AB=15とする。このときx軸、y軸および直線に同時に接する円について 円Dの中心の座標を求めよ 下の図は解説です。 解説にAS=9+15+12/2=18 とあるのですが、どうしてこうなるのですか? よろしくお願いします 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
ありがとうございます! 助かりました。