この英文の和訳をお願いします。
We evaluated <P(e, 0)> for 12 cases of e between 0 and 6: e=0.0, 0.01, 0.1, 0.5, 0.75, 0.9, 1.0, 1.2, 1.5, 2.0, 4.0, and 6.0. As for r_p, we considered three cases: r_p=0.005, 0.001, and 0.0002. These are representative values of radii of protoplanets at the Earth, Jupiter, and Neptune orbits regions, respectively. The numbers of collision orbits found by our orbital calculation are shown in Table 3 for representative values of e. From Table 3 we can expect the statistical errors in the evaluated collisional rate to be within 5% for the cases of e≦1.5 and within 8% for e=4 and 6; they are smaller than that of the previous studies by Nishida (1983) and by Wetherill and Cox (1985).
The calculated collisional rate is summarized in terms of the enhancement factor defined by Eq. (27) and shown in Fig.11, as a function of e and r_p. From Fig.11 one can see that the collisional rate is always enhanced by the effect of solar gravity, compared with that of the two-body approximation <P(e,0)>_2B. In particular, in regions where e≦1, R(e,0) is almost independent of e, having a value as large as 3. At e≦1, R(e,0) has a notable peak beyond which the enhancement factor decreases gradually with increasing e. For large values of e, i.e., e≧4, <P(e,0)> tends rapidly to <P(e,0)>_2B. As seen in the next section, we will find a similar dependence on e even in the three-dimensional case (i≠0) as long as we are concerned with cases where i≦2.
お手数ですが、よろしくお願いします。
お礼
お礼が遅くなりましたm(__)m 翻訳ありがとうございました。