※ ChatGPTを利用し、要約された質問です(原文:複雑な制約条件を持つ目的関数について)
複雑な制約条件を持つ目的関数について
このQ&Aのポイント
複雑な制約条件を持つ目的関数の解法について調査中です。
クラスAの重みと他の重みの総和、コスト、ベクトルの総和、スラック変数を使った目的関数を最適化するための方法を模索中です。
制約条件を反映させながら最適化問題を解く方法について学習中です。
パターン認識で、最適化問題を解いています。
制約条件が複雑で、どのように目的関数に反映させればいいのか
調べているのですがなかなか解が見つからず困っています。
もし、ヒントでも教えていただけると大変助かります。
求めたいのは 軸の重み W とスラック変数 Z です。
目的関数:
Q(W,Z)=1/2×クラスAの重み+A以外の重みの総和×{(コスト×ベクトルの総和)/入力データ}×スラック変数の2乗
制約条件:
(軸の重みWと類似度を使った式)-(軸の重みWと類似度を使った式)=1-スラック変数Z
ひとつの最適化問題を解くことで、WとZ、二つの解を同時に得るためには、制約条件をどう反映させればいいでしょうか。
勉強していますが、まだまだ知識不足ですので、直接の解ではなくとも、
もしよい参考サイトがあればぜひ教えてください。
どうぞよろしくお願い致します。
お礼
masudaya様 教えてくださってありがとうございました。 すぐに書きこんでくださったのに、お礼が遅くなりましてすみません。 ラグランジュの未定乗数、勉強します。 参考サイトもありがとうございました。 またわからないことがありましたらぜひ教えてください。