- 締切済み
複素解析 除去可能特異点
複素解析学を勉強しているのですが、「ある関数f(x)の特異点は除去可能特異点であることを示せ。」 という問題の解き方がわからないのですが、どうわかりません。教えていただけないでしょうか? 普通に特異点を求めたあと、何かの定理や、やり方を使って除去可能な特異点であると証明するのですか? また、今解いている似たような問題で、 f(z)=z/(e^z-1)とする。点0はf(z)の除去可能特異点であることを示せ。 答えが、lim(z→0)z/(e^z-1)=lim(z→0)1/(e^z)=1したがって点0は除去可能特異点である。 もうひとつが、関数f(z)=(1-cosz)/z (|z|>0) を指定された円循環領域でローラン展開し、除去可能特異点であることを示せ。 これの解き方はまた別のやりかたで示すのでしょうか?
- みんなの回答 (1)
- 専門家の回答
みんなの回答
- foomufoomu
- ベストアンサー率36% (1018/2761)
回答No.1