ベストアンサー ※ ChatGPTを利用し、要約された質問です(原文:偏微分についての計算) 偏微分についての計算方法 2010/06/21 18:53 このQ&Aのポイント 偏微分についての計算について解説します。1回目の偏微分で間違いがある可能性がありますので、修正方法を説明します。2回目の微分は複雑ですが、順を追って計算することで解決できます。 偏微分についての計算 偏微分についての計算 u= - ky/r^2,r^2=x^2+y^2 が二次元のラプラシアンを示せ。 という問題があるのですが、何回といてみても出来ないので、先生に聞いてみると、1回目の偏微分で間違っているよ!と言われましたが、後は何も教えてくれません。どこが違うのかを教えてください。 あと、2回目の微分が複雑で自分の頭の中も整理が付かないのでそこのところのアドバイスもお願いします。 あと、今回の偏微分はDを使わせてもらいます。 (私の現状で作っている解答) Du/Dx=Du/Dr・Dr/Dx =3ky/r^4・(x/r)=3kxy/r^4 Du/Dy=Du/Dy+Du/Dr・Dr/Dy=-ky/r^2+3ky/r^4・(y/r)=3ky^2/r^4 D^2u/Dx^2=D/Dx(3kxy/r^4)=3ky/r^4-12kxy/r^5・(x/r)=3ky/r^4-12kx^2y/r^6 質問の原文を閉じる 質問の原文を表示する みんなの回答 (1) 専門家の回答 質問者が選んだベストアンサー ベストアンサー Tacosan ベストアンサー率23% (3656/15482) 2010/06/21 18:59 回答No.1 ん~, たぶん Du/Dr から間違ってる. 質問者 お礼 2010/06/21 22:24 解答のほうありがとうございました。とりあえずご指摘のところを直してみましたが、それでも不安なので、 http://okwave.jp/qa/q5985470.html にて再び質問しています。出来れば、解答していただくとありがたいです。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 偏微分についての計算 偏微分についての計算 u= - ky/r^2,r^2=x^2+y^2 が二次元のラプラシアンを示せ。 という問題があるのですが、何回といてみても出来ないので、先生に聞いてみると、1回目の偏微分で間違っているよ!と言われましたが、後は何も教えてくれません。どこが違うのかを教えてください。 とりあえず、ここかな?と思うところは直してみたもののそれでも心配です あと、2回目の微分が複雑で自分の頭の中も整理が付かないのでそこのところのアドバイスもお願いします。なお、今回の偏微分はDを使わせてもらいます。 (やりなおした結果) Du/Dx= 2ky/r^3・x/r=2kxy/r^4 Du/Dy= Du/Dy+Du/Dr・Dr/Dx -k/r^2+2ky/r^3・y/r =-k/r^2+2ky^2/r^4 D^2u/Dx^2=D/Dx(2kxy/r^4) f=2kxy/r^4とおく =Df/Dx+Df/Dr・Dr/Dx =2ky/r^4-8kxy/r^5・x/r =2ky/r^4-8kx^2・y/r^6 D^2u/Dy^2=D/Dy(-k/r^2+2ky^2/r^4) g=-k/r^2+2ky^2/r^4とおく =Dg/Dx+Dg/Dr・Dr/Dx+Dg'/Dr・Dr/Dx =4yk/r^4-8ky^2/r^5・y/r+2k/r^3・y/r =4yk/r^4-8ky^3/r^6+2ky/r^3 =6ky/r^4-8ky・y^2/r^6+2ky/r^3 微分方程式の同次形 微分方程式の同次形って (y/x)の形をつくって、そこから y/x=u とおいて計算してくじゃないですか。 その後に、dy/dx=u+x(du/dx) となるのはなぜなのでしょうか? dy/dx=uとなるなら納得するんですが、その後に加わっているx(du/dx)はどういった考え方をすれば出てくるのでしょうか? dy/dx=u+x(du/dx)から考えてみても、y=uxにならないんですよね。 考え方を教えてください。 同次形微分方程式 下の“微分方程式を解け”という問題がわかりません。 (1) (x+y)+(x-y)(dy/dx)=0 (2) xy(dy/dx)=x^2+y^2 この2つなんですが、一応、同次形微分方程式の範囲なので y/xの形にしてみたんですが・・・ (1) (x-y)(dy/dx)=-(x+y) (dy/dx)=-(x+y)/(x-y) 右辺の分母分子をxで割る (dy/dx)=-(1+y/x)/(1-y/x) y/x=uとおくとy=xuよって(dy/dx)=u+x(du/dx) よって u+x(du/dx)=-(1+u)/(1-u) x(du/dx)=-(1+u)/(1-u) -u x(du/dx)=-(1+u^2)/(1-u) (1-u)du/(1+u^2)=(1/x)dx 両辺を積分というとこの左辺のせきぶんがわかりません。 というかここまでまちがってるかもしれません。 (2) (dy/dx)xy=x^2+y^2 両辺をx^2でわる。 (dy/dx)(y/x)=1+(y/x)^2 y/x=uとおくとy=xuよって(dy/dx)=u+x(du/dx)よって u+x(du/dx)=(1+u^2)/u x(du/dx)=(1+u^2)/u -u x(du/dx)=(1/u) udu=(1/x)dx 両辺を積分 (1/2)u^2=logx+C よって(1/2)(y/x)^2=logx+C y^2=2x^2(logx+C) となり、とりあえず答えは合いました。過程はあってますか? あと、最終的な答えの形なんですがy=で答えるとかx=で答えるとか ってありますか? 微分 やり方を見せてほしいです y=-3ln(1-x)^2 を微分せよという問題です。 私のやり方 (1-x)を u とする y=-3lnu^2 u^2 をzとする y=-3lnz dy/dx = (dy/dz)(dz/du)(du/dx) =(-3/z)(2u)(-1) =6/u =6/(1-x) となります。 答えはこれで合っているのですが無駄なやり方をしてる様に思います。 普通はどんなやり方をしているのでしょうか? 2次微分の変数変換 dy/dx=(dy/du)(du/dx) とかけて、dy/dxからdy/duの関係に変換することは積分でよくあります。 ですが、2次微分 d^2y/dx^2 をdy/duの関係に書き換えるとどうなりますか。 たとえば、sinx=uとしますと、dy/dx=(dy/du)cosxになりますが、 d^2y/dx^2はどうでしょう。 うまく説明できていないかもしれませんが、 どなた分かる方がいらっしゃいましたら、ご教示お願いします! 合成関数の微分法により,d/dx * y^2 = 合成関数の微分法により,d/dx * y^2 = d/dy * y^2 * dy/dxと書いてあったのですが、何故こうなるかが分かりません 関数 y = f(g(x)) を y = f(t) と u = g(x) の合成関数と考えるとき, dy/dx = dy/du * du/dx が合成関数の説明ですが、ここの説明のyとuは、上の式(d/dx * y^2 = d/dy * y^2 * dy/dx)では何になっていますか? 同次形微分方程式 次の問題がわかりません。 次の微分方程式を解け。 (1)(x-y)(dy/dx)=2y (2)dy/dx=y/x+sin(y/x) (1)(x-y)(dy/dx)=2y (dy/dx)=2y/(x-y) 右辺の分母分子をxで割る (dy/dx)=2y/x/(1-y/x) y/x=uとするとdy/dx=u+xdu/dxより u+xdu/dx=2u/1-u xdu/dx=2u/1-u -u xdu/dx=u+u^2/1-u (1-u)du/(u+u^2)=dx/x 両辺を積分 の左辺の積分がわかりません。それかもっといい方法あったら 教えてください。 (2)y/x=uとするとdy/dx=u+xdu/dxより u+xdu/dx=u+sinu xdu/dx=sinu du/sinu=dx/x 両辺を積分 の左辺の積分がわかりません。お願いします。 微分方程式です。 1/e^kx・d/dx・(e^kx・y)=y'+ky が成り立つのを示したいのですが、よく分かりません。 y'+ky=f(x)とおいて、この両辺にe^kxをかけて、 e^kx(y'+ky)=e^kx・f(x) (e^kx・y)'=e^kx・f(x) u(x)=e^kx・y(x)とおくと、u'(x)=e^kx・f(x) となって、変数分離形を解くみたいなのですが、よく分かりません。 それからこの後、y'+ky=xを上を使って解くのですが、それも分かりません。 分かる方、できるだけ詳しく教えて下さい!お願いします!! 関数の導関数を求める方法(合成関数の微分を用いる方法) 次の関数の導関数を求める問題なのですが、 以下の解き方であってるでしょうか? (1) f(x) = (2x+1)^3 f(x)=u^3, u=2x+1とおき、合成関数の微分を用いる。 公式 (dy/dx)=(dy/du)・(du/dx)より、 f'(x)=(dy/du)=3u^2 (du/dx)=2 ∴(dy/dx) = (dy/du)・(du/dx) = 3u^2・2 = 6u^2 = 5(2x+1)^2 (2) g(x)=1/(x^2+x+1) f(x)=u^(-1), u=x^2+x+1とおき、合成関数の微分を用いる。 公式 (dy/dx)=(dy/du)・(du/dx)より、 g'(x)=(dy/du)=u^(-1) (du/dx)=2x+1 ∴(dy/dx) = (dy/du)・(du/dx) = u^(-1)・(2x+1) = (x^2+x+1)^(-1)・(2x+1) = (2x+1)/(x^2+x+1) 三角関数の微分 IIICをやってて少し気になったので 質問させてください “y=sin(3x) と表されるとき(dy/dx)を求めよ” という問題で私は2つの解答例が思い浮かびました [解答例1] u=3xと置くと (dy/du)=3 (du/dx)=u*cos(u) となり、合成関数の微分法の公式から (dy/dx)=(dy/du)*(du/dx) =(3)*{u*cos(u)} =3*3x*cos(3x) =9x*cos(3x) (答) [解答例2] 3倍角の公式から sin(3x) =3sin(x)-4{sin(x)}^3 よって (dy/dx) =[3sin(x)]'-[4{sin(x)}^3]' =3cos(x)-12[{sin(x)}^2]*[cos(x)] (答) となってしまい、同じ式を微分したのに 異なる解答が出てきます。 この場合どちらが正しいのでしょうか。 あるいはどちらも正しいのでしょうか。 回答をお願いします 2階微分方程式について yy"+(y')^2+1=0 解:(x+A)^2+y^2=B^2 の解き方がわかりません。 dy/dx=pとして d^2y/dx^2=dp/dx=dy/dx・dp/dy=p(dp/dy) . yp(dp/dy)+p^2+1=0......(1)問題式にd^2y/dx^2、dy/dx=pを代入する。 p(dp/dy)+p^2/y+y.......(2)両辺に1/yをかける。 . ベルヌーイ形なので,u=p^2 (du/dy=2p・dp/dy)を代入して、 1/2du/dy+u/y=-y.....(3) . uとyの、線形微分方程式として解いて、 u=p^2=1/y^2(-1/2・y^4+C)......(4) . p=±1/y√(-1/2・y^4+C)........(5) この後(5)を積分して解が出ると思うのですが、 (それ以前に考え方自体が間違っているかもしれませんが) 右辺の積分の仕方がわからず解けなくて困っています。 どなたか教えてください 微分の公式について すいません。 おしえてください。 u=f(x),y=g(u)がともに微分可能のとき、合成関数 y=g(f(x))=g・f(x) も微分が可能であって、次式が成り立つのに dy/dx=dydu ・ du/dx または y'=g'(u)・f'(X) の証明がわかりません。 初心者向けにおしえてください 合成関数の微分 z=f(x、y) u=x+y v=x-yのとき、Z[u]、Z[v]をf[x]、f[y]を用いて表せっていう問題です。 z[u]=(dz/dx)(dx/du)+(dz/dy)(dy/du) x=u+v/2 だからdx/du=1/2 y=u=v/2 だからdy/du=1/2 よってz[u]=dz/dx(1/2)+dz/dy(1/2) =1/2f[x]+1/2f[y] あってますか??答えは一致したんですけど、dz/dxをf[x]、dz/dyをf[y]にしてもいいんでしょうか?? 間違ってたら教えてください!!! 偏微分の問題です 偏微分の問題です 数学の中間試験の過去問で疑問にぶち当たりました。 u=x+y v=x-2y のとき、du/dx dx/du を求めなさいという問題なのですが、(dは全てラウンドディーです)答えではそれぞれ1と2/3となっています。1つ目の式のyを定数とみてdu/dxが1というのは分かります。また、yに二つ目の式を代入し、変形してから偏微分すると、2/3に確かになります。しかし、一つ目の式をx=u-yと変形してdx/du=1ではダメなのでしょうか。 このように、2つ式が与えられたときに、dx/duまたは、du/dxが何を定数とみなして偏微分するかによって値が異なってしまうとおもいます。上の場合では、xをuとvの式であらわしてvを定数とみなして偏微分する場合と、xをuとyの式であらわしてyを定数とみなして偏微分する場合とでは答えが変わります。 どうしたらいいのか見当もつきません。どうか皆様ご教授ください。 以下問題を添付します。 微分方程式の解法について・・・・ 一次微分方程式では「y=ux」とおき、一般解などを求めていくものが多いように感じられるのですが、 以下のような問題を解くためにはどのように進めていけばいいのでしょうか? 以下の微分方程式の一般解を求めよ。また、u = 2y^2-6yとおくこと。 dy/dx = -(2y^2-6y+4)/x(2y-3) 自分なりに du/dx = du/dy * dy/dx = ~ とし一般解を求めようと努力したのですが、どうしても途中で詰まってしまいます。 どなたか、お力をお貸しください。 また、最後に見難い記述しか出来ないことと、一方的な要望となってしまっていることをお詫び申し上げます 微分方程式について。 微分方程式の一般解をもとめます。 (1)dy/dx=(y^2)+y これは、線形微分方程式を使ってとくのでしょうか?? (2)(x-y)y'=2y 同次形で解きましたが 途中の式、 ∫du(1-u)/(u+u^2)=∫1/xでの右辺の積分がわかりません。 両者の解答の導き方を教えてください。お願いします。 微分方程式の解法について・・・ 一次微分方程式では「y=ux」とおき、一般解などを求めていくものが多いように感じられるのですが、 以下のような問題を解くためにはどのように進めていけばいいのでしょうか? 以下の微分方程式の一般解を求めよ。また、u = 2y^2-6yとおくこと。 dy/dx = -(2y^2-6y+4)/x(2y-3) 自分なりに du/dx = du/dy * dy/dx = ~ とし一般解を求めようと努力したのですが、どうしても途中で詰まってしまいます。 どなたか、お力をお貸しください。 また、最後に見難い記述しか出来ないことと、一方的な要望となってしまっていることをお詫び申し上げます 微分方程式 1階線形 y’-2y/x = xy^3 は y’/y^3-2/x*1/y^2と変形できる。 ここで、1/y^2 = uとおくと、この微分方程式はx、uに関する1階線形になることを示せ。 次にそれを解くことにより、この微分方程式の一般解を求めよ。 という問題なのですが一応解いてみたのですが合っているのかいまいち分かりません。 間違っている箇所があれば教えてください。 よろしくお願いします。 ↓ y’/y^3-2/x・1/y^2=x 1/y^2=uとおくと、 du/dx=du/dy・dy/dx du/dx=(-2/y^3)・y’ du/dx=-2y’/y^3 となりますから、 y’/y^3=-1/2 du/dx よって、元式に代入すると、 -1/2 du/dx-2/x u=x …(1) 定数変化法を用いる。斉次形の解をまず求める -1/2 du/dx-2/x u=0 du/dx=-4u/x ∫du/u=-4∫dx/x ln|u|=-4ln|x|+C1 u=±e^(-4ln|x|+C1) u=Cx^(-4) Cがxの関数であったものとして、非斉次形の解を求める。 C=p(pはxの関数)とおくと、 du/dx=p’x^(-4)-4px^(-5) ですから、(1)にそれぞれ代入して、 -1/2 {p’x^(-4)-4px^(-5)}-2/x px^(-4)=x -1/2 p’x^(-4)+2px^(-5)-2px^(-5)=x -1/2 dp/dx=x^5 ∫dp=-2∫x^5 dx p=-1/3 x^6+C 従って、 u=(-1/3 x^6+C)x^(-4) u=-1/3 x^2+Cx^(-4) となるから、1/y^2=uより、 1/y^2=-1/3 x^2+Cx^(-4) 常微分方程式です dy/dx=x^2+y^2/xy の微分方程式をy=uxとおいて求めたんですけど u+xdu/dx=1+u^2/u-u =1/u ∫u du=∫1/x dx u^2/2=log|x|+C C=u^2/2-log|x| =y^2/2x^2-log|x| になったんですがこれであってますか? 微分方程式の問題 dy/dx=2xy+x^3y^2 解:1/y=1/2(1-x^2)+Ce^(-x^2) の問題なのですが、 ベルヌーイの方程式のやり方で解いていった後、 du/dx=-2xu-x^3 [u=1/y du/dx=-1/y^2(dy/dx)] になり、線形微分方程式で解いていくと、 u=e^(-∫2xdx)(∫e^(∫2xdx)(-x^3)+c) となり、∫e^(∫2xdx)(-x^3)を部分積分の形で計算していくと、 解と異なる答えがでてきてしまいます。 どこが間違っているのでしょうか。 注目のQ&A 「前置詞」が入った曲といえば? 緊急性のない救急車の利用は罪になるの? 助手席で寝ると怒る運転手 世界がEV車に全部切り替えてしまうなら ハズキルーペのCMって…。 全て黒の5色ペンが、欲しいです 長距離だったりしても 老人ホームが自分の住所になるのか? 彼氏と付き合って2日目で別れを告げられショックです 店長のチクチク言葉の対処法 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど
お礼
解答のほうありがとうございました。とりあえずご指摘のところを直してみましたが、それでも不安なので、 http://okwave.jp/qa/q5985470.html にて再び質問しています。出来れば、解答していただくとありがたいです。