重回帰分析かロジスティク分析か?
多変量解析で、教えてください。
20人のケースで、Xという現象がー100~100%の幅で、増減したとして、事象A,B,C,D.E.Fが関与しているかどうかを調べるとします。
それぞれが、それぞれA~Fの現象と、変動率を散布図にて、表示すると、A,B.Cで相関があり、相関係数は R=±0.4~0.7でした。D,E.Fは、r=0.2以下でした。
単回帰分析をすると、要因A,B,Cでの回帰式は、有意とされました。A,B.Cの要因がどの程度のつよさで、Xという現象に関与しているかを調べる必要があるとすると、多変量解析をする必要があると思いますが、
その方法論として、X現象に対する重回帰分析が良いのか、X現象が増加するか、減少するかという現象に置き換えて、ロジスティク回帰分析の方が良いでしょうか?
それとも、症例数から言うと多変量解析は無意味でしょうか?
また、もし重回帰分析、ロジスティク回帰するとすると、A~F全て組み込むのか、単回帰で、有意だったA~Cだけで良いのでしょうか?
見よう見まねで、A~Cだけで重回帰すると、分散分析ではすべて有意でしたが、回帰式では、A,Bの組み合わせでは、A、B共に有意、A~Cの組み合わせだと、Aだけ有意とでました。この所見の記載として、
単変量解析では、A,B,Cが有意だったが、多変量解析では、Aのみが有意であるとして良いのでしょうか?