- ベストアンサー
拡張された逆正接関数の表記方法?
Mathematica や Maple,Excel などでは,逆正接関数を用いて全象限について偏角が出力できるよう,拡張された逆正接関数が用意されております。例えば Mathematica の ArcTan[x,y],Maple の arctan(y,x),Excel の atan2(x,y) 関数などです。 さて,このような拡張された逆正接関数は実際の数学にも存在するのでしょうか? もし存在する場合,どのように表記するのでしょうか? もし数式が複雑な場合,TeX で教えていただければ幸いです。 どうか宜しくお願いいたします。
- みんなの回答 (2)
- 専門家の回答
質問者が選んだベストアンサー
複素数zの偏角をarg z で表わします。偏角のうち - π < arg z ≦ π を満たすものを主値と呼び、Arg z で表わします。したがって ArcTan[x,y] = Arg(x+iy)
その他の回答 (1)
- sokamone
- ベストアンサー率34% (11/32)
すみません。数学ソフトあまり使いこんだ経験がないのに ここに書きこむことお許しください。すこし関心があったので^^。 ふつう逆正接関数は、実数値に対して、たとえば (-90°,90°)の範囲に値をとるような関数として定義しますよね。 この拡張された逆正接関数の形をみると、2変数(x,y)みたいですけど、これは普通の意味の逆正接関数にy/xという実数を入れた値を返すという意味なのでしょうか? (x,y)と入力することで第何象限かということも入力しているわけですね。たぶん、x≠0なのでしょうね。 長年数学の世界にいますが、紙の上の数学ではそのような関数はみたことないです。それは単に、 x>0ならば、[0°、90°)U(270°、360°)の範囲でtanθ=y/xをみたすθを与え、 x<0ならば、(90°、270°)の範囲でtanθ=y/xをみたすθを与える、 という関数じゃないのでしょうか?
お礼
ご回答,大変ありがとうございます。 > 普通の意味の逆正接関数にy/xという実数を入れた値を返すという意味なのでしょうか? そうなのですが,arctan(y/x) とは異なる点が二つあり,まず一つ目は x = 0 でもちゃんと値を返すという点です。x = 0 かつ y > 0 の時は θ = 90°, y < 0 の時は θ = 270°になります。二つ目は既にお察しされております通り,x < 0 の時に θ の値に 180°が加わる点です。なお,x = y = 0 の時の挙動はソフトによってまちまちで,θ = 0°を返す場合とエラーとなる場合があります。これらのことは質問文中に記すべきだったと思います。申し訳ございませんでした。 > 長年数学の世界にいますが、紙の上の数学ではそのような関数はみたことないです。 そうですか。確かにこれは場合分けをすればよいだけの話ですが,もし定まった書き方があるのでしたら,…と思い質問をさせて頂きました。この度は,ご回答ありがとうございました。
お礼
> ArcTan[x,y] = Arg(x+iy) なるほど,解決しました。 ご回答,大変ありがとうございました。