- ベストアンサー
数学の問題が分かりません。
見ていただきありがとうございます。 問題はこちらです。 次の問題を微分せよ。 (1)y=√(1+x)/√(1-x) 解いた結果、{-x(1-x^2)^-1/2(1-x)+(1-x^2)^1/2}/(1-x)^2となりました。 しかし、この分母を(1-x)(1-x^2)^1/2としてみよと、言われたんですが分かりません。 (2)y=arccos1/x 答えはあってるんですが、sinθの範囲が分からず、そのままsinθ≧0としてしまったため、指摘されました。 sinθの範囲はどうなるのでしょうか。 分かるかたがいましたら回答よろしくお願いします。
- みんなの回答 (2)
- 専門家の回答
質問者が選んだベストアンサー
- ベストアンサー
noname#111804
回答No.2
(1) y=√(1+x)/√(1-x) =1/{(1-x)√(1-x^2)}
その他の回答 (1)
- info22
- ベストアンサー率55% (2225/4034)
回答No.1
(1) >解いた結果、{-x(1-x^2)^-1/2(1-x)+(1-x^2)^1/2}/(1-x)^2となりました。 計算が間違っていませんか? 計算しなおしてみてください。 また、分子に○^(-1/2)となっている場合は分子分母に○^(1/2)を掛けてないといけないね。 (2) sinθやθは何処から出てきたものですか? xやyと関係がないθが急に登場して分けが分かりません。 arccosの定義域から -π≦y=arccos(1/x)≦0,-1≦(1/x)≦1 ということがいえます。