- 締切済み
ラグランジュの運動方程式
線密度がO~L/2までがρ、L/2~Lまでが2ρの棒を支点をOとして振り子を作ります。その時のラグランジアンとラグラジュアンの運動方程式がわかりません(><) 運動エネルギーはどうなるのかがわからずに何も進みません。 どのように考えればいいのでしょうか?
- みんなの回答 (1)
- 専門家の回答
みんなの回答
- yokkun831
- ベストアンサー率74% (674/908)
回答No.1
与えられた振り子の運動は,基本的に1次元運動(自由度1)です。 Oから鉛直下方を基準に,棒の角度θを座標にとります。 2つの部分に分けて考えましょう。 上部の 重心運動のエネルギー 1/2・ρL/2・(L/4・θ')^2 重心まわりの回転運動のエネルギー 1/2・1/12・ρL/2・(L/2)^2・θ'^2 下部の 重心運動のエネルギー 1/2・ρL・(3L/4・θ')^2 重心まわりの回転運動のエネルギー 1/2・1/12・ρL・(L/2)^2・θ'^2 となると思います。ただし,θ'=dθ/dtです。
お礼
なるほど、そうやって上部と下部で分ければいいのですね(^^) 丁寧な回答ありがとうございます。