• ベストアンサー

問題の解き方

力学の問題で解き方によって答えが違ってくるのですがどれが間違っているのでしょうか? 問題 粗い水平面上で質量10gの物体に初速度1m/sを与えたら10cm進んで止まった。動摩擦係数を求めよ 動摩擦係数μ 速度v0=1m/s 質量m 距離d=0.1m  重力加速度g=9.8 m/s^2として 回答1 力学的エネルギーと仕事の関係より mv0^2/2=μmgd μ=v0^2/(2・gd)=1/(2・9.8・0.1)=0.51 回答2 加速度αとして運動方程式より mα=-μmg μ=-α/g ここで初速度1m/sを与えたら10cm進んで止まったので α=ー1/0.1=ー10m/s^2 μ=-α/g=10/9.8=1.02 回答3 運動方程式より md/dt(dx/dt)=-μmg 両辺を積分区間[tから0]tで積分して 0-v0=-μgt v0=μgt もう一度両辺を積分区間[tから0]tで積分して v0t=μmgt^2/2 μ=2v0/gt=2・1/(9.8・0.1)=1.02 解答では回答1と同じでしたが回答2,3の違うところをお願いします。

質問者が選んだベストアンサー

  • ベストアンサー
  • hiroki53
  • ベストアンサー率100% (1/1)
回答No.1

回答2では加速度が違います。 この問題では加速度αは一定の力を受けて減速しているので、等加速度直線運動の公式 (初速度の二乗)-(終速度の二乗)=2α(移動距離)よりα=5m/s^2となります。ちなみにこの公式は等加速度直線運動の速さと加速度を表す二つの式を連立して時間を表す変数を消去することにより、求められます。 回答3では加速度が5なので時間tが0.2となります。

pluta
質問者

お礼

そうでした・・自分がまだまだということを実感しました ありがとうございます

その他の回答 (1)

  • sin456
  • ベストアンサー率0% (0/1)
回答No.2

結論からいうと、回答1が正解です。 回答2では ここで初速度1m/sを与えたら10cm進んで止まったので α=ー1/0.1=ー10m/s^2 ここの部分が誤りで、α=v/tが正しい求め方なのに対しこの回答ではxで割ってしまっています。 回答3では、積分時にtがごっちゃになってしまっています。 両辺を積分区間[Tから0]tで積分すると v0=μgTとなります ここで右辺のTは定数のため、もう一度tで積分しても意味がありません。 尚エネルギー保存則は、 ma=F ⇔ mΔv=F ⇒ mvΔv=Fv をtで積分することで mv^2/2=Fxが導かれます

pluta
質問者

お礼

こまかな説明ありがとうございます 回答3の説明は納得しました! 

関連するQ&A