関数解析の位置づけについて
数学の分野に関数解析というものがあります。このテキストを開くと、集合、位相、空間論(ソボレフ、バナッハ、距離)などが書いてあります。私は1つ特徴的に思ったのですが、それらの本には不等式がいっぱい出てきます。関数解析とは数学的にどのような位置を占めているのでしょうか。素人から見て、実生活に役に立ちそうにない分野の数学(しかしそれは数学の発展とか深い理解に向けての分野なのだろうなという想像はできますが)があります。一方で代数、解析、微分方程式、ベクトル・テンソル解析などは実生活のフィーリングとぴったり合うというイメージがあります。整数論は役に立たないような感じでしたが、コンピュータによる高速演算により離散数学とか情報処理・暗号とかに関係するような感じがあります。確率・統計は実生活にぴったり寄り添うわけですね。確率微分方程式になると急に難しい様相になりますが。
この関数解析(空間論?)はどのように位置づけられているのでしょうか。あの不等式は何を言おうとしているのかという疑問が浮き上がってきます。私は、関数解析によってもたらされる効用は、”今、やっていることをそのまま安心して継続して下さい”ということなのだろうかと思いますが。あの不等式がそれを保証しますと。あるいは厳密解が求まらない方程式についてせめて解の存在とか解の存在する範囲ぐらいは示せるということなのでしょうか。
以上、私の認識を修正して頂ければありがたいと思います。よろしくお願いします。
補足
そうします。やっぱり自分に合ったものがいいですよね