- 締切済み
曲線上の点P(x,y)における法線をLとし、Lとx軸との交点をQとする。
曲線上の点P(x,y)における法線をLとし、Lとx軸との交点をQとする。次の問に答え... 曲線上の点P(x,y)における法線をLとし、Lとx軸との交点をQとする。 次の問に答えよ。ただし、Oは原点を表し、|PQ|、|OQ|はそれぞれ線分PQ、OQの長さを表す。 (1) Lがつねに定点(a,b)を通る曲線の方程式を求めよ。 (2) |PQ|=|OQ|となる曲線の方程式を求めよ。 (1)は以下のように考えました。 P(x,y)における法線はy’(Y-y)+X-x=0で、点(a,b)を通るので y’(b-y)+a-x=0 yy’-by’+ x-a=0 (y-b)dy=-(x-a)dx 両辺を積分して 整理すると、(x-a)^2+(y-b)^2=a^2+b^2 (2)は方程式の立て方が分かりません。 アドバイスお願い致します。
- みんなの回答 (1)
- 専門家の回答
みんなの回答
- MM_T
- ベストアンサー率40% (2/5)
回答No.1