- ベストアンサー
電子回路 演算増幅器 オペアンプ 積分器 周波数特性について
オペアンプの積分器の周波数ー利得特性について、補正抵抗がついていないものと、ついているものの比較をしたいのですが、載っているサイトがなかなかみつかりません。サイトを知っているという方、もしくはどういう風な特性か分かる方、よろしくお願いいたします。
- みんなの回答 (2)
- 専門家の回答
質問者が選んだベストアンサー
参考URLの図A-3(2ページ目)がその回路です。参考URLでは結果しか書いてありませんが、その回路の利得と位相の周波数特性は以下のようにして計算できます。 【補正抵抗がある場合】 図A-3のように入力電圧を ei、出力電圧を eo、補正抵抗を Rf、積分回路を構成する抵抗とコンデンサをそれぞれ Ri、C とします。OPアンプの反転入力(-)の電位は非反転入力(+)の電位(0V)と等しいので、Ri に流れる電流 i は i = ei/Ri --- (1) となります。 OPアンプの入力には電流が流れないので、この電流 i はC と Rf に分割されて流れますが、Rf 側に流れる電流を i1 とすれば、C に流れる電流は i - i1 となります(C と Rf に流れる電流の和は i なので)。C と Rf の両端の電圧は、OPアンプの反転入力(-)の電圧( 0V )と出力電圧 eo の差 eo に等しいので eo = i1*Rf --- (2) eo = ( i - i1 )/( j*ω*C ) --- (3) となります。j は虚数、 ωは角周波数 です。 式(2) と (3) から i1 を消せば i = ( 1/Rf + j*ω*C )*eo --- (4) なので、さらに式(1), (4) から i を消せば、入力と出力の比(複素利得)は eo/ei = 1/{ Ri*( 1/Rf + j*ω*C ) } = Rf/{ Ri*( 1+ j*ω*C*Rf ) } ← 分母と分子に Rf をかける = Rf*/[ Ri*{ 1 - ( ω*C*Rf )^2 } ]*( 1- j*ω*C*Rf ) ← 分母と分子に √( 1- j*ω*C*Rf ) をかける となります。 これはA*( 1 - j*B ) の形ですから、その絶対値(利得)は | eo/ei | = A*√( 1 + B^2) = ( Rf/Ri )/√{ 1+ ( ω*C*Rf )^2 } --- (5) 入力 ei に対する出力 eo の位相をΦとすれば tanΦ = -B = -ω*C*Rf --- (6) となります。 (1) DCでの利得と位相 DCでの利得 G0 と位相 Φ0 は式(5), (6) で ω = 0 とした場合で G0 = Rf/Ri tanΦ0 = 0 → Φ0 = 0 (2) コーナ周波数 ωc での利得と位相 利得が G0/√2 となる角周波数を ωc とすれば、式(5)から ( Rf/Ri )/√2 = ( Rf/Ri )/√{ 1+ ( ωc*C*Rf )^2 } → ( ωc*C*Rf )^2 = 1 → ωc = 1/( C*Rf ) このときの位相 Φc は tanΦc = -ωc*C*Rf = -1 → Φc = -π/4 ( = -45度 ) (3)高周波( ωc << ω )での利得と位相 ωc = 1/( C*Rf ) なので、ωc << ω のとき、 1/( C*Rf ) <<ω → 1 << ω*C*Rf となります。そのとき式(5) の 1 は無視できて G(ω) = | eo/ei | = ( Rf/Ri )/( ω*C*Rf ) となります。ωc << ω のときの利得は角周波数に反比例して減少していきます。位相は式(6)そのままで tanΦ = -ω*C*Rf --- (6) で与えられます。ω*C*Rf が非常に大きいときは tanΦ = -∞ → Φ = -π/2 ( = -90度 ) となります。 |eo/ei| ↑ 利 G0 │ ̄ ̄\ 得 G0/√2│──┐ \ (対数) │ │ \ └──────→ ω ωc 角周波数 (対数) Φ ↑ 位 0 │ ̄ ̄\ 相 -45 │──┐ \ (度) -90 │ │  ̄ ̄ └───────→ ω ωc 角周波数 (対数) 【補正抵抗がない場合】 同様に計算すれば eo/ei = 1/( j*ω*C*Ri ) = -j/( ω*C*Ri ) これは実数部がなく虚数だけの j*B というですから、その絶対値(利得)は | eo/ei | = | B| = 1/( ω*C*Ri ) 入力 ei に対する出力 eo の位相をΦとすれば、実数部がゼロなので tanΦ = -∞ → Φ = -π/2 ( = -90度 ) となります。この場合ωcは存在せず、DC利得(ω→0)は無限大となります。位相は全ての周波数で -π/2 です。 利得と位相の周波数依存は単純なので図示しません。 補正抵抗がないと、DC利得が大きすぎて(実際にはOPアンプのオープンループ利得で制限される)、出力電圧が飽和してまうので、現実には補正抵抗を入れてDC利得を制限します。積分回路というのは本来、全ての周波数帯域で出力の位相が入力に対して-90度となるものですが、補正抵抗を入れると位相が -90度とならない周波数領域(ω < ωc )ができてしまいます。したがって、扱う周波数に対してωc が充分小さくなるように、C*Rf の値ぶ必要があります。例えば、1Hz以上の信号だけを扱うのであれば、ωc = 2*π*1 = 6.28 rad/s として、C*Rf = 6.28 となるようにします。Rf = 10^6 Ω = 1 MΩ とすれば、C = 6.28/10^6 = 6.28 F = 6.28μF とします。
その他の回答 (1)
- inara
- ベストアンサー率72% (293/404)
積分回路の帰還コンデンサ C と並列に抵抗を入れて、DCでの利得を制限することが行われますが、補正抵抗とはその抵抗の意味でしょうか。 周波数-利得特性でなく、周波数-位相特性を調整するのに、C と直列に抵抗を入れることがありますが、この抵抗(位相補償抵抗)のことでしょうか。積分回路の位相補償方法はいろいろありますが、[1]-[3] が参考になるかと思います( G が利得です)。 [1] http://lab8.ec.u-tokai.ac.jp/compens_circuit.pdf [2] http://lab8.ec.u-tokai.ac.jp/guidebook.PDF [3] http://anabuki.ec.u-tokai.ac.jp/class/class/2003/exp2/T2.pdf
補足
回答ありがとうございます。すみません、言葉が足りませんでしたね。 補正抵抗はコンデンサCと並列に抵抗を入れて、利得を調整する方です。その周波数と利得の特性のグラフが知りたいのですが、もしわかりましたら、よろしくお願いいたします。