ベストアンサー 微分の仕方 2007/06/20 23:17 y=2x-cosxとy=sinx-tanxのやり方を教えてください。 みんなの回答 (3) 専門家の回答 質問者が選んだベストアンサー ベストアンサー sanori ベストアンサー率48% (5664/11798) 2007/06/20 23:22 回答No.1 y = 2x - cosx y' = (2xの微分) - (cosxの微分) y=sinx-tanx y' = (sinxの微分) - (tanxの微分) あとは公式でどうぞ。 なお、 tanx の微分は、tanx の公式を忘れても sinx/cosx の微分という考え方で計算できます。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 その他の回答 (2) Mr_Holland ベストアンサー率56% (890/1576) 2007/06/21 00:01 回答No.3 まずは、下のサイトの次の関数の微分を覚えてください。 よく使うものばかりです。必須といってもいいでしょう。 x^a, sin(x), cos(x), tan(x), log(x), e^x http://ja.wikipedia.org/wiki/%E5%BE%AE%E5%88%86#.E5.88.9D.E7.AD.89.E9.96.A2.E6.95.B0.E3.81.AB.E9.96.A2.E3.81.99.E3.82.8B.E5.85.AC.E5.BC.8F 「初等関数に関する公式」 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 LPLBIF ベストアンサー率20% (12/60) 2007/06/20 23:51 回答No.2 ひとつ目: {2(x+h)-cos(x+h)-2x+cosx}/h が、hが限りなく0に近づいたときどうなるかを考えます。 ふたつ目: {sin(x+h)-tan(x+h)-sinx+tanx}/h が、hが限りなく0に近づいたときどうなるかを考えます。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 微分 次の関数を微分しなさい。 1.y=2x√(x^2+1) 2.y=x/√(1-x^2) 3.y=√(1-x)/√(1+x) 4.y=x^2 sin(x+1) 5.y=sinx cos^2(x) 6.y=sin√(x^2-x+1) 7.y=sin^4(x) cos4x 8.y=√(1+cos^2(x)) 9.y=cosx/(1-sinx) 10.y=(tanx+(1/tanx)) 簡単な説明でも結構です。(○○の公式を使って・・みたいな) 非難や愚痴だけはごめんです。 微分解いてください(;;) y=(cosX)/(1+sinX) y=(1-tanX)/(1+tanX) y=2のlogX乗 途中式書いてくださるとありがたいです 明日テストなので助けて、、、 微分方程式の解 積分 ∫sec^(3)x*e^(tanx+log|cosx|) dx cosD^(2)y+secxDy+(secxtanx+cosx)y=2sec^(2)xtanx D[cosxDy+(secx+sinx)y]=2sec^(2)xtanx cosxDy+(secx+sinx)y=sec^(2)x Dy+(sec^(2)x+tanx)y=sec^(3)x y=e^(-α)*{∫sec^(3)x*e^α dx +C} (α=tanx+log|cosx|) tanx=βとおいてみたり,部分積分を試みたのですが ∫sec^(3)x*e^(tanx+log|cosx|) dxのが求められません。 解き方わかった方教えてください。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 逆三角関数の微分の問題 (1)f(x) = Arctan{tanx+(1/cosx)} (2)f(x) = Arctan{(3sinx+2cosx)/(3cosx-2sinx)} という関数を微分する問題なんですが、どちらもどのように手をつけていけば解きやすいか検討がつきません・・・。 (1)の場合なら{tanx+(1/cosx)}をt、(2)の場合なら{(3sinx+2cosx)/(3cosx-2sinx)}をtと置いてやればできると思いますが非常に時間がかかってしまい、テストなどでは辛いです。 なにか解きやすくする方法はありますか? ちなみに解答は (1)1/2 (2)1 です。 ご教授お願いします。 三角関数 微分 y=tanx=sinx/cosx を微分すると答えはどうなるんですか?教えてください 途中式もお願いします。 微分の問題です。 y=(cosx)^(sinx) を対数微分方で微分せよという問題で 対数をとって両辺をxで微分するとなぜこのような式に なるのかわかりません。 y'/y=cosxlog(cosx)+(sinx)×(-sinx)/cosx (sinx)×(-sinx)/cosx はどこからでてきたんでしょうか。 お願いします!!!!(@_@) 三角関数の微分 三角関数の微分が解けません。 三角関数の法則を利用して答えは纏めた形になるのですが、上手く纏める方法が思いつきません。 1. y=sin^2xcos^3(2x) y'=2sinxcosx*cos^3(2x)+sin^2x*(-6)cos^2xsinx Ans:y'=sin2xcos^2(2x)*{1-8sin^2(x)} 2sinxcosxを2倍角の公式を利用したりして纏めましたが答えにたどり着けません。 また、 2. y=sinx/1+tan^2(x) y'=cosx{1+tan^2(x)}-sinx*2tanx{1/cos^2(x)} Ans:y'=cosx{1-3sin^2(x)} 纏め方について助言お願いします。 微分 問題を解いたのですが、自分の答えがあっているか不安なので、間違っているか教えてくれませんか? 問1 次の導関数を求めよ。 (1) y=(sinx + x^2)^(4/3) (2) y={(e^2x + 1)^(1/2)}/e^(-x) 問2 次の導関数を求めよ。 (3) y=arccos2x/sinx 問3 次の極値を求めよ。 (4) y=x+2sinx (0≦x≦2π) (5) y=x^(1/2)-logx 自分の解答 (1) y'=(4/3)(cosx+x^2)(sinx+x^2)^(1/3) (2) y'={(e^2x +1)^(1/2)+(e^2x +1}/(e^-x)(e^2x +1)^(1/2) (3) y'=-[{2sinx/(1-4x^2)}+cosx・arccos2x]/sin^2 x (4) 自信がないので全部書きます。 y'=1+2cosx=0 よってcosx=-1/2 x=2π/3 増減表を書くと x 2π …4π/3… 2π/3 … 0 y + - + z /極大 \ 極小 / (/は右上の矢印のことです) よって極大値は y=4π/3-√3 極小値は y=2π/3+√3 ここで、疑問なのですが、極大値より極小値のほうが値が大きいと思うのですが、これでいいのでしょうか? (5) y'=0より、x=4となる 増減表を書くと x 0 … 4 … y - + z \ 極小 / (/は右上, \は右下の矢印のことです) よって極小値は y=2-2log2 このような解答になりましたがどうでしょうか? 微分 問題を解いたのですが、自分の答えがあっているか不安なので、間違っているか教えてくれませんか? 問1 次の導関数を求めよ。 (1) y=(sinx + x^2)^(4/3) (2) y={(e^2x + 1)^(1/2)}/e^(-x) 問2 次の導関数を求めよ。 (3) y=arccos2x/sinx 問3 次の極値を求めよ。 (4) y=x+2sinx (0≦x≦2π) (5) y=x^(1/2)-logx 自分の解答 (1) y'=(4/3)(cosx+x^2)(sinx+x^2)^(1/3) (2) y'={(e^2x +1)^(1/2)+(e^2x +1}/(e^-x)(e^2x +1)^(1/2) (3) y'=-[{2sinx/(1-4x^2)}+cosx・arccos2x]/sin^2 x (4) 自信がないので全部書きます。 y'=1+2cosx=0 よってcosx=-1/2 x=2π/3 増減表を書くと x 2π …4π/3… 2π/3 … 0 y + - + z /極大 \ 極小 / (/は右上の矢印のことです) よって極大値は y=4π/3-√3 極小値は y=2π/3+√3 ここで、疑問なのですが、極大値より極小値のほうが値が大きいと思うのですが、これでいいのでしょうか? (5) y'=0より、x=4となる 増減表を書くと x 0 … 4 … y - + z \ 極小 / (/は右上, \は右下の矢印のことです) よって極小値は y=2-2log2 このような解答になりましたがどうでしょうか? 微分の質問です!! y=(e^-2x)sin3x が等式 ay+by'+y''=0 を満たすとき、定数a,bの値を求めなさい。 この場合、まずy=(e^-2x)sin3xの式を微分すればいいと思うのですが、どうも混乱してしまい、できません。 y'= (-2e^-2x)sin3x + (e^-2x)3sinxcosx = (e^-2x)sinx(-2+3cosx) y''=(-2e^-2x)sinx+e^-2xcosx(3sinx) このようなやり方であってますか? 一番分からないのは、sinやcosの微分です。 sinxの微分はcosx,cosxの微分はsinxだということまでは分かるのですが、例えば(sin^2)xの微分は2sinxcosxになりますよね? では、sin3xの微分は、3sinxcosxなのでしょうか?それとも3cosxでしょうか? 微積分学のマクローリン展開について tanxのマクローリン展開がわかりません。 tanxの微分から直接求めるのではなく、sinx,cosxなどの基本的な関数のマクローリン展開が既知のものとして、解きたいです。 例えば tanx=sinx/cosxよりsinx=x-x^3/3!+…,cosx=1-x^2/2!+…を代入して… といった具合です。 教えてください。 微分方程式の解き方を教えてください Y''+Y=x*sin2xとY''-4Y'+4Y=4e^(3x)-2sinxの解放を教えてください 答えはY=C1sinx+C2cosx+1/3sin2x+4/9cos2x Y=C1e^(2x)+C2xe^(2x)+4e^(3x)-6/25sinx-8/25cosx となる様なのですが度のようにもって行くのかが分かりません教えてもらえないでしょうか? 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 導関数の微分について y= cos(3x+2) dy/dx = (dy/du) (du/dx)より = -sin(3x+2) ・3 = -3sin(3x+2) と計算してここまではいいのですが y= 1/sinx 答えは -cosx/sin^2x となっていましたがなぜでしょう y = sinx^-1として dy/dx = (dy/du)(du/dx) = (cosx^-1) (-sinx^-2) =-1/(cosx・sin^2x) ではどうしていけないのでしょうか。 微分のやり方で困ってます y=cos^-1 / sinx の微分で商の微分法を使って計算したところ、 y'=(-1-cos^-1x * cosx * √(1-x^2)) / (sinx * √(1-x^2)) となりました。これで大丈夫でしょうか?? 教えてください!お願いします。 2重根号のはずし方を教えて下さい 三角関数の問題でX=1/8Πのとき、sinX,cosX,tanXの値を求めるとあり sinXは√(2-√2)/2,cosXは√(2+√2) と解けたのですが tanXの値が求められません。 おそらくtanX=sinX/cosXで求まると思いますが 途中までで{√(2-√2)}/{√(2+√2)}の先の説き方 が分かりません。 誰か教えていただけないでしょうか? 宜しくお願い致します。 微分 三角関数 y=cosx/sinxを微分すると y'={(cosx)'sinx-cosx(sinx)'}/(sinx^2) ={-sinxsinx-cosxcosx}/sin^2x ={-(sin^2x+cos^2x)}/sin^2x =-1/sin^2x で ={-(sin^2x+cos^2x)}/sin^2xからどうして =-1/sin^2xになるんですか? 教えてください 微分方程式 y'sinx-ycosx=tan^2x 参考書によると、y=sinx(tanx+C) だそうです 詳しい解説お願いします 微分 y=(sinx)^x (0<x<3π/2) 回答では対数微分法を用いていますがあまり使いたくないので 解説お願いします。 以下自分の回答です。 y´={(sinx)^x}log(sinx)*cosx 合成関数として微分しています。 三角比の問題です 0°≦x≦180°とする。 (1)4sin^2x-4cosx=1となるxを求めなさい。 (2)sinx-cosx=1/2のとき、tanx+1/tanxの値を求めなさい。 この2問が解けません。 2階線形微分方程式 質問なんですが。 微分方程式で y''-2y'+y=(e^x)cosx という問題があるんですが この特殊解を求めるときに y=a(e^x){cosx+(i)sinx} とおいて、これを微分方程式に代入すれば 特殊解がy=-(e^x)cosx となるとなっているのですが。 y=a(e^x){cosx+(i)sinx} とおくというのがよく分かりません。 なんでiがでてくるのかとかも…。 僕は最初 y=a(e^x)cosx+b(e^x)sinxとおいて計算していました。 質問がわかりにくかったらすいません。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など