- ベストアンサー
証明
何度も失礼します。 問題は、a,b,cはどの2つも1以外の共通な約数を持たない正の整数とする。a,b,cが、a^2+b^2=c^2を満たしているとき、次の問いに答えよ。 (cは奇数である) (1)a,bの1つは4の倍数であることを示せ。 証明は、cは奇数であるから、,bのうちいずれか一方は偶数で、他方は奇数である。いま、偶数の方をaとしてもよい。aが4の倍数でないと仮定すると、a=4k+2,b=4m±1,c=4n±1(k,m,nは整数)とおける。 a^2+b^2=(4k+2)^2+(4m±1)^2 =8(2k^2+2k+2m^2±m)+5 c^2=(4n±1)^2=8(2n^2±n)+1 よってあまりが違い、矛盾するので正しい。 となっているのですが、{a=4k+2,b=4m±1,c=4n±1(k,m,nは整数)}ですが一つ目の疑問は(k,m,nは整数)ですが、整数では、例えばmが-3とかのとき明らかに-になるのでだめですよね?bが正の整数を大前提にということでしょうか?もうひとつは、これはb,cは奇数であることをいいたいのだからa=4k+2、b=2m-1,c=2n-1(・・・m,nは自然数)としてはいけないのでしょうか?それでもできるとおもうのですが。b=4m±1,c=4n±1である理由があるのでしょうか?
- みんなの回答 (3)
- 専門家の回答
質問者が選んだベストアンサー
その他の回答 (2)
noname#47975
回答No.2
noname#53123
回答No.1
お礼
まとめてのお礼失礼します。 証明は難しいですね。大変よくわかりました。みなさん本当にどうもありがとうございました。