- 締切済み
周期構造の回折
私は現在大学で、回折現象について勉強しているます。 ガラスなどの透明基盤に金属でできた周期構造をつくり、そこに光(可視光、平面波)を入射した場合の反射と透過光の回折効率を求めるシミュレーションを作ろうと思っているのですが、疑問に思ったとこがあり質問しました。(周期構造の周期は1μmほどで高さは波長程度です。周期構造は無限に続くとしています) まずこのような場合、フレネルやフラウンホーファー回折などのスカラー回折理論で解こうとするとき、構造体に関する情報(金属の誘電率や周期構造の高さなど)を考慮することは不可能なのでしょうか? もし、物質の誘電率を考慮できないのであれば、反射と透過は同時に起こることは決してなく、また吸収も考慮されないということでしょうか? 構造体が波長に比べて大きい場合もそうでしょうか? また、このような場合に最も効果的な回折理論を教えていただけないでしょうか?もちろんベクトル回折理論で結構です。 お暇なときで結構ですので、よろしくお願いします。
- みんなの回答 (1)
- 専門家の回答
みんなの回答
- paddler
- ベストアンサー率53% (176/330)
> 構造体に関する情報(金属の誘電率や周期構造の高さなど)を考慮する... このような解析には、回折格子表面付近の電磁場(近接場)をFDTD(Finite Difference Time Domain)法により解析できるシミュレータを使います。代表的なものに、EM Flexや EM-Suiteなどがあります。 > このような場合に最も効果的な回折理論 Maxwell方程式をこれらFDTD法のシミュレータでシミュレーション解析するのが手っ取り 早いかと(原理式を解析的に解くのは甚だ困難でしょう)。 ちなみに、一般に回折格子が特定の波長で回折効率の不連続変化を示すアノーマリと 呼ばれる現象も、スカラー解析では扱えず、ベクトル解析でないと解析できません。 EM Flex http://www.wai.com/AppliedScience/Software/Emflex/index-em.html EM-Suite http://www.intsoft.co.jp/panoramic/example1.htm 参考:FDTD(Finite Difference Time Domain) http://ja.wikipedia.org/wiki/FDTD
お礼
回答ありがとうございます。やはりスカラー回折理論では限界があるということですね。