ベストアンサー 複素数平面の座標転換 2002/01/13 23:10 早速、質問させていただきます。 2+√(5+2i)をXY座標で表すと、どうなりますか? 先ほど友人に複素数平面の問題を聞かれたのですが、 此処が分からなくなってしまい、困っています。 よろしくお願いします。 みんなの回答 (1) 専門家の回答 質問者が選んだベストアンサー ベストアンサー nuubou ベストアンサー率18% (28/153) 2002/01/14 04:43 回答No.1 ルート1は実数の範囲で考えると1であるが 複素数の範囲で考えると±1なんですよ だからルート某は複素数の範囲では1つか2つあるのです 通常は2つですけどね だから答えは推して量るべしです 質問者 お礼 2002/01/14 07:36 ありがとうございました。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 複素数平面と座標 複素数平面とXY座標の関係を教えてください また、複素数平面ではP(a+bi)でカンマがつかない状態ですが、これはxy座標のx軸だけを表して、P(x)とカンマがつかない状態で表すのと同じ考え方ですか? 複素数平面と座標平面の対応について 本などを見ると、P=a+biとP(a,b)は一対一対応をしていると書かれてあるのですが、これについてどのように整理をつければよいのか迷っています。まず、複素数平面上を書くときは軸に「実軸、虚軸」とはっきり書かないといけないのでしょうか。それと、複素数平面上の点Pの横に(a,b)と書いてはだめですよね。絶対にP=a+biの形で添えないとだめですよね。つまりどこまで対応しているのか分からないんです。あくまで複素数平面と座標平面は別個のものだから、答案を書くときにはそれを別々に書かないとだめですよね。 それと、ベクトルとつなげるときには、複素数平面ではなくて座標平面で考えるんだと思うのですが、そうすると、回転のとき以外はすべて座標平面で考えた方がよいのでしょうか。複素数平面の使い方が余りよくわかりません。 よろしくお願いします。 複素数平面 ①|z+2-I|=4をみたす複素数平面上の点zは、ある円上の点になる。円の中心と半径を求めよ。 ②2|z-2-I|=|z-2-4i|をみたす複素数平面上の点zは、ある円上の点になる。円の中心と半径を求めよ。 という問題なのですが、理解に苦しんでいます。 分かりやすい説明をしてくださると幸いです。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 高校の複素数平面は? 高校での複素数平面は何故、新課程では無くなってしまったんでしょうか? 電気電子工学を学んでいる自分にとっては、複素数平面はとても重要で、これを高校のうちにやっておかないと、大学での電気回路の授業におけるフェーザ表示等が分かり難くなってしまうような気がします。複素数平面を削るくらいなら、[平面幾何]や[極座標、極方程式]等を削った方がいいような気がします。それともこれは自分が電気学科だからであって、他の理系学科の人は複素数平面はあまり重要ではないのでしょうか。 どなたか、どうして複素数平面が消されてしまったのか納得できる説明をして下さい! 数3 複素数平面 異なる3つの複素数α、β、γに対して、 等式 γ=(3-√3i)α/2-(1-√3i)β/2 が成り立つ時、複素数平面上で3点A(α)、B(β)、C(γ)を頂点とする△ABCの3つの角の大きさを求めよ。 複素数平面です α=1+i,β=2+3iとする。複素数zに複素数f(z)=αz+βを対応させる。 1.f(z)=zを満たす複素数zを求めよ。この複素数をz0と表す。 2.z≠z0である複素数zに対して{f(z)-z0}/(z-z0)を求めよ。 3.z≠z0である複素数zに対して、複素数平面上で複素数z0,z,f(z)を表す点をそれぞれM,A,Bとする。このとき三角形ABMはどんな形の三角形か。 お願いします 座標平面の作り方 数学の教科書とか問題集に出てくる座標平面の作り方を教えてください!試験対策で問題を作っているのですが、この作り方がわからないので困っています。 単なる座標平面だけの作り方と、y=2x+1などの方程式のグラフの書き方も教えていただけると助かります。 複素数平面 問)複素数平面上で0、2+i、1+3iを頂点とする平行四辺形の他の頂点はどんな複素数で表されるか。 2+i、1+3iをそれぞれ点P(p)、Q(q)とおく。 P+Q=3+4i P-Q=1-2i Q-P=-1+2i よって他の頂点は3+4i、1-2i、-1+2i。 これが僕の解答ですが、解法は正しいでしょうか? 不十分な点などご指摘おねがいします! 複素数平面でのベクトルの扱い方について 複素数平面の問題で複素数をベクトルで表していいんですか? また、複素数平面の図に→OAなどと書いていいのですか? 例えば点Aを表す複素数αがあったとき、αと書かずに→OAと書いていいんですか? また、点Aを原点中心に60度回転させるとき、α・(cos60°+isin60°)と書かず に、→OA・(cos60°+isin60°)と書いていいのですか? 先生によって言うことがまちまちなので混乱しています。よろしくお願いします。 複素数平面 2つの複素数α=-√3+i、β=1-iがあり複素数平面上に円C:|z-αβ|=r(0<r≦2√2)がある。偏角は0°以上360°未満。円C上を点zが動く時、zの偏角の最大値と最小値の差が120°であるとする。rの値を求めよ。また、このとき偏角が最小となるzをa+bⅰの形で表せ。 α=2(COS30°+iSIN30°) β=√2(COS315°+iSIN315°)と極形式で表した後はどのように考えればいいのですか。どなたか教えて下さい。 極座標について質問です。 直交座標での面積を求めたい場合、極座標に置き換えても同じ面積になるのでしょうか?また、置き換えた場合はxy平面内で、同じ概形として取り扱ってもよろしいのでしょうか? ある問題で、 x=e^-tcost y=e^-tsint(0≦t≦π/2) の時、x軸とy軸とこの曲線で囲まれる面積を求めよ。という問題で極座標に置き換えて、かつxy平面で同じ概形で考えていて、疑問に思い質問しました。 よろしくお願いします。 複素数平面と実数平面の関係について 複素数平面と実数平面の関係は互いに直行しているのですか?それとも実数平面と複素数平面は別々に考えるべきものなのでしょうか?たとえば指数関数のグラフは実数平面では単調増加、複素数平面では円ですが2つの平面を合わせて3次元空間として表示できるとしたらどのように表示されるのでしょうか? 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 複素数平面 複素数平面上の異なる3点O(0)、A(α)、B(β)を頂点とする三角形において、2α^2-2αβ+β^2=0が成り立つという。この三角形はどのような形か。 2α^2-2αβ+β^2=0をα^2で割り、2-(2β/α)+(β^2/α^2)=0としました。ここまではいいのですが、参考書の模範解答を見てみるといきなりβ/α=1±i=√2{cos(±45°)+isin(±45°)}となっていました。なぜこのようになるのですか?私の計算間違いかもしれないのですが、この答えにならないのです。答えは∠OAB=90°の直角三角形となっています。解き方をどなたか教えて下さい。よろしくお願いします。 複素数平面と波動 複素数平面では波が円で表されると聞いたのですが、これを利用して単振動や波動の問題を解けるのでしょうか? 複素数平面の問題 複素数平面の原点をP0とし、P0から実軸の正方向に1進んだ点をP1とする。以下、点Pn(n=1,2,・・・)に到着した後、45度回転してから前回進んだ距離の1/√2倍進んで到着する点をPn+1とする。このとき点P10を表す複素数を求めよ ※Pのあとの数字は小さな数字です。 という問題なのですが、どうやって解いたらよいのかよくわかりません。 答えは33/32+31/32iです よろしくお願いします。 複素数平面と極形式 202 複素数α=1+√3i,β=1-√3iとする。 (1)1/α^2+1/β^2の値を求めよ。 (2)α^8/β^7の値を求めよ。 (3)z^4=-8βを満たす複素数zを求めよ。 この問題を解いてください。お願いします。 平面ベクトルと複素数の関係について 複素数の実部と虚部を平面上の(x,y)と対応づける事をよくしますよね? これには、どのような利点があるのでしょうか? ※複数あると思うので、具体例を列挙していただけると助かります。 また、ベクトルの成分同士(平面ベクトルで言えばxとy)は 次元が違いますからxとyが干渉し合う事はありません。 (yはどこまでいってもどこまで) でも複素数の実部と虚部には i*i = -1 という実部と虚部を繋ぐ関係式があるので 実部と虚部は完全に独立した存在ではないと思うのです。 (もちろん積さえ考えなければ、実部と虚部は独立しているというのは理解できます。。) よって、ベクトルと複素数は似て非なるものではないかとおもうのですが。。 それに関連して、あるサイト上で以下のような記述を発見しました。 「 まずはa→=(1,3),b→=(2,2)のように,ベクトルを成分で表します。これを複素数だと思って, a=1+3i,b=2+2i と読み替えてください。この2つの複素数の掛け算は, (1+3i)(2+2i)=2+2i+6i-6=-4+8i となります。これを再びベクトルとして読み替えると(-4,8)となりますが・・・ 実はこれがベクトルの積の計算方法なのです。 a→×b→=(1,3)×(2,2)=(-4,8) というのが正解です。 」 たとえば、i*i= -2 という風に定義していたとしたらこの計算結果は変わってきますよね? なのでこのように複素数とベクトルを同一視するのはおかしいと思うのですが。。 ベクトルと複素数に関して、理解を深めたいので解説してください。 お願いします! 数III、複素数平面上の図形に関する問題です。 数III、複素数平面上の図形に関する問題です。 「複素数zの実部をRezで表す。w=1/zとする。 (1)|z|>1かつRez<1/2を満たすzの領域を複素数平面上に図示せよ。 (2)点zがRez=1/2を満たしながら動くとき、点wが動く曲線を複素数平面上に図示せよ。 (3)点zが(1)で求めた領域を動くとき、点wが動く領域を複素数平面上に図示せよ。」 答えは画像にある通りです。考え方・解き方を教えていただきたいです。よろしくお願いいたします。 極座標で¥与えられたxy平面上の曲線 極座標で¥与えられたxy平面上の曲線 C1:r=1+cos@ C2:r=(1+root2)sin@ C2の内側で、かつC1の外側になる部分の面積を求めよ あまり わからないんです。 よろしく お願いいたします。 3次方程式の根の複素数平面上の三角形 次の問題はどう攻めたらよいのでしょうか。 「3次関数 f(z)=0 を満たす3つの解が複素数平面上で三角形を成すとき、 f'(z)=0 の2つの解を焦点とし、上の三角形の一辺の中点を通る楕円は他の辺の中点も通り、かつ三角形に内接することを示せ。」 3次方程式の解が3実数でないときは1個の実数と2個の共役な複素数なので、複素数平面上で三角形を成すときは実数軸を対称軸する2等辺三角形ということは分かります。また、3次関数のグラフは変曲点が2個所あるから f'(z)=0 の2つの解は実数で、複素数平面の実数軸上にあると思います。しかし、実軸上にある三角形の頂点および底辺の中点と、f'(z)=0 の解との複素数平面上での位置関係が分からないので、その先が進みません。どういうふうに考えを進めたらよいのでしょうか。よろしくお願いします。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
ありがとうございました。