- ベストアンサー
ラグランジュを用いた最適化問題
xはn次元ベクトル、AとBはn×nの行列です。 Aは半正定値で階数はたかだか(n-1)であるとします。 xの転置をx'と表しています。 max x'Ax s.t. x'Bx - 1 = 0 という問題についてなんですが、ここでラグランジュを考えると L(x) = x'Ax - λ( x'Bx - 1 ) となって、xについて偏微分して0とおくと、 Ax = λBx となり、Bに逆行列B^(-1)が存在するならば (B^(-1)A - λI)x = 0 (Iは単位行列) となりますよね。ここまではわかるのですが、次に 「B^(-1)Aの最大固有値をλ1とすると max{L(x)} = λ1 が求まる。」 と書いてあって、理解できません。 どなたかよろしくお願いします。
- みんなの回答 (2)
- 専門家の回答
質問者が選んだベストアンサー
その他の回答 (1)
- yaksa
- ベストアンサー率42% (84/197)
回答No.2
お礼
L(x)=λ になるんですね! 完全に盲点でした。 ありがとうございました。